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ABSTRACT

Short term voltage stability in the form of delayed voltage recovery (FIDVR) poses a signif-

icant threat to system stability and reliability. This work examines the voltage instability issue

in a power system with dense concentration of induction motor loads and applies dynamic VAR

injection as a counter-measure to ensure short term voltage stability following a large distur-

bance. The dynamic behavior of motor loads, such as decelerating and stalling, is considered

as the major cause of FIDVR incidents especially during summer peak load conditions in areas

where low inertia single-phase air conditioning (A/C) motors comprise a significant portion

of the load. If system dynamics are not taken into account properly, the proposed control

solution may be an expensive over design or an under design which is not capable of mitigat-

ing FIDVR problems completely. This work aims to provide a comprehensive dynamic VAR

planning strategy for handling short term voltage stability problems by proper consideration

of system dynamics, multiple contingencies, multiple scenarios and operating conditions. In

addition, this approach aims to provide valuable system insights such as behavior of different

contingencies and dynamic voltage control areas. Contingencies are clustered together accord-

ing to their behavioral similarity with respect to voltage performance using an entropy based

metric called Kullback-Liebler (KL) measure. Using the information of contingency clusters, a

new concept called dynamic voltage control areas is derived. The concept of dynamic voltage

control area will address the importance of the location of dynamic reactive reserves. Control

vector parameterization (CVP), a dynamic optimization based approach is used to identify

the optimal locations and amount of dynamic VARs required to mitigate short term voltage

problems. The main idea of CVP approach is to solve the system dynamics separately and

utilize the system dynamics results in the constraints evaluation during optimization routine.

Also this method is applicable to large scale systems because of the utilization of commercial

power system and large scale optimization solvers. Simulations have been carried out on mod-
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ified IEEE 162 bus system to show the working of contingency clustering, dynamic voltage

control area identification and CVP method for single contingency case. The CVP method has

also been tested on a large scale realistic power system to show the scalability of the proposed

approach.
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CHAPTER 1. OVERVIEW

1.1 Introduction

CIGRE and IEEE task force [1] provided the classification of power system stability as

shown in Fig.1.1. Based on the physical nature of the instability, size of the disturbance

and time frame of interest the power system stability problem is broadly classified into three

groups namely rotor angle stability, frequency stability and voltage stability. Voltage stability

is defined as the ability of the system to maintain steady voltages at all buses in the system

following a disturbance. Voltage instability could lead to progressive rise or fall of voltages at

different buses. Voltage collapse is the process by which the sequence of events accompanying

voltage instability leading to a blackout condition or abnormally low voltages in a significant

portion of the power system. Based on the type of disturbance, the voltage stability problem

can be classified as small and large disturbance stability problem. Large disturbance voltage

stability refers to the ability of system to maintain steady voltages when subjected to large

disturbances such as three phase faults, loss of generators etc.

Small disturbance voltage stability refers to the system’s ability to maintain steady voltages

when subjected to small perturbations such as incremental changes in the system load. Further,

based on the time frame of interest, the voltage stability problem is classified as short-term

and long-term stability problem. The study period of interest for short-term voltage stability

problem is in the order of several seconds, and for long term voltage stability the study period

may extend to several minutes. With growing demand for electric power, and limitations

in construction of generation and transmission services, the problem of maintaining voltage

stability will remain a challenge in the foreseeable future. Many occurrences of system blackout

have been linked to the problem of maintaining voltage stability and inadequate reactive power



www.manaraa.com

2

supply is a major contributor to this challenge. The consequences of voltage instability include

loss of load in an area, tripping of transmission lines and other elements leading to cascading

outages.

Figure 1.1: Classification of power system stability [1]

The short-term voltage stability is characterized by the interactions of fast acting dynam-

ics of power system components such as induction motors, excitation system of generators,

synchronous condensers, static var compensator (SVC), voltage dependent loads, flexible AC

transmission system (FACTS), HVDC links etc following a disturbance. The short term volt-

age stability problem can manifest in one of the two forms - delayed voltage recovery and

voltage collapse. According to North American Electric Reliability Corporation (NERC) def-

inition, Fault Induced Delayed Voltage Recovery (FIDVR) is a phenomenon whereby system

voltages remain at significantly reduced levels for several seconds after a fault in transmission,

sub-transmission or distribution level has been cleared [2]. The NERC transmission issues

subcommittee (TIS) provides the following characterization of FIDVR,

• Stalling of induction motors

• Initial recovery of voltage after fault clearing is less than 90% of the pre-contingency

voltage level



www.manaraa.com

3

• Slow voltage recovery of more than 2 seconds to the expected post-contingency steady

state voltage level.

FIDVR has gained increased attention in the literature since incidents of slow voltage re-

covery associated with induction motor dynamics have been reported in summer peaking load

areas, where low inertia single phase A/C motors comprise a significant portion of the load.

Figure 1.2 shows a typical FIDVR fault that happened in Southern California Edison (SCE)

system following a 230 kV transmission fault. In this case, the recovery of voltage is delayed

due to stalling of induction motors, which were eventually disconnected by thermal protection

switch. After 20 seconds, the voltage overshoots because of the presence of capacitors when

sufficient loads are disconnected. Then the capacitors are switched off to reduce the voltage

level. During the period where the voltage is returning to its normal value, air conditioner (AC)

loads started coming back into the system. Since there is insufficient reactive support due to

switched off capacitors, sudden reactive demand lead to exposure to another under voltage

event.

Figure 1.2: A typical FIDVR following a 230 kV transmission fault at SCE system [2].

Faults in areas with high penetration of residential A/C can provoke FIDVR events. The

stalling behavior of induction motors, especially single phase residential A/C motors, is one of

the major causes of FIDVR events. To gain a better understanding of the role of induction

motor stalling in FIDVR events and to guide modeling efforts, more than 25 A/C units were
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tested in the SCE and BPA laboratories. Based on the test results, the typical real and reactive

power characteristics of an A/C unit when exposed to FIDVR events is shown in fig. 1.3. The

following inferences can be made about the characteristic behavior of induction motors.

• Under NORMAL conditions, there is no significant change in the real power require-

ments when the voltage is reduced until the stall voltage is reached. The reactive power

requirements reduces proportionally as the voltage decreases till 85% and then exhibits

an inverse proportional characteristics until the stall voltage is reached.

• When the stall voltage is reached, the real and reactive power requirements jumps to

higher levels. In fig.1.3, the real power increased from 4000 watts (for 80 F) to as high as

12000 watts when stalled. Similarly, the reactive power increased from 900 vars to 12000

vars under stalled state. In general, when an induction motor stalls following a severe

disturbance, it may draw 5 to 8 times its normal reactive power requirement[7],[8].

• In the stalled condition, the real and reactive power requirements are directly proportional

to the applied voltage. The higher the applied voltage, the higher the real and reactive

power requirements. This behavior continues until the A/C unit is disconnected by a

protection unit.

The sudden increase in the reactive power requirement may prevent voltage recovery and

may lead to tripping of loads and rapid collapse of an area power system. Although the

phenomenon of FIDVR can occur at any voltage level, the impact is adverse when such events

happen due to faults at Bulk Energy System (BES). Such events pose the risk of being cascaded

into larger area. The consequence of such event could be detrimental as it can lead to blackouts

or power plant tripping. Investigation of FIDVR phenomenon requires special emphasis on

modeling issues related to induction motor loads as well as on optimal allocation of reactive

power resources to ensure adequate voltage recovery following disturbances.

The white paper published by NERC[2] has descriptions about the causes, sequence of events

happening during FIDVR incidents and potential solutions to mitigate FIDVR events. Control

solutions to mitigate slow voltage recovery problem can be classified into unit-level and system-

level solutions. One of the unit level solution is to add a relay that disconnect A/C compressor
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Figure 1.3: Typical A/C real and reactive power characteristics for three different outdoor
temperatures [3]

motors when there is a reliable detection of impeding stall condition. Currently, the necessary

standards required to achieve this goal is non-existent and retrofit of existing A/C units is

even more difficult to accomplish. The use of system level solutions will be necessary until

the threat of induction motor loads stalling can be reduced to a significant level. The system

level solutions can be further classified into two types: demand-side solutions and supply-side

solutions.

Demand side solutions use protection system to rapidly disconnect motor loads at system

level during periods of low voltage. Different strategies include use of special protection schemes

(SPS), under-voltage load shedding (UVLS) to limit the amount of load affected by low volt-

age problem. Limiting the impacted load through demand side solutions may not prevent the

recurrence of FIDVR events. The system exposure to delayed voltage recovery can be a symp-

tom of a larger issue - inadequate dynamic reactive support. Supply side solutions use dynamic

reactive resources to provide dynamic VAR support to the system. Dynamic reactive resources

are automatically controlled reactive resources that has the capability to voltage deviations
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in a rapid manner. Synchronous generators, synchronous condensers, FACT devices such as

static var compensator (SVC), static compensator (STATCOMs) are some examples for dy-

namic reactive resources. But, large-scale installation of these devices is expensive, and their

cost increases with size (capacity). The effectiveness of dynamic support is very dependent

on its location. Therefore, it is necessary to develop dynamic VAR placement strategies that

enhance short term voltage stability and at the same time remain cost effective solutions.

1.2 Literature Review

In this section, first incidents of FIDVR happened in the utility system have been summa-

rized. Second, the characteristics and role of induction motors in FIDVR events are provided.

Third, the efforts to quantify FIDVR events have been discussed. Finally, the approaches

that discusses the placement of dynamic reactive resources and their short-comings have been

discussed.

Incidents of FIDVR: Various U.S. utilities have reported experiencing delayed voltage recovery

events on their systems. FIDVR events have been observed in Southern California, Arizona,

Texas, Florida, and the southeastern part of US [9],[10]. Numerous FIDVR events have occurred

in the past resulting in a significant loss of load. Some of the major FIDVR that have been

reported in the literature are provided in Table 1.1

More recent FIDVR events are not reported in journal articles, but they have been presented

at conferences and workshops. Southern California Edison (SCE) has observed 37 FIDVR

events in 2006 and six events during 2007. The large number of events during 2006 was

attributed to use of high AC load because of hot and humid weather conditions [11]. SCE

continues to observe FIDVR events, especially during summer monsoonal season. In [FDC],

FIDVR events captured using power quality records in SCE’s valley sub-transmission network

has been reported.

Induction motor characteristics: The load characteristics of air conditioners and other

motor driven compressor loads play a significant role in causing a FIDVR event. When the

reciprocating compressors drives pistons, it increases the mechanical load faced by an induction
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Table 1.1: Practical FIDVR Incidents

Date
Event/ Recovery Interrupted

Remarks
Ref.

Utility Time Load

June, 1990 SCE desert re-

gion, SCE

Several

seconds

- Major FIDVR event [9]

August, 1997 Hesperia, SCE 20-25 s 3500 MW Lugo plane crash ac-

cident

[11]

30 July,1999 Union

City,Southern

Company

15 s 1900 MW Load tripped by in-

duction motor pro-

tection

[10]

28 July, 2003 Hassayampa 500

kV Fault, APS

Several

seconds

440 MW 90,000 customers af-

fected

[12]

1 July, 2003 Pinncacle Peak

Capacitor Fault,

APS

9 s 1000 MW 48,000 customers af-

fected

[12]

29 July, 1995 Phoenix,APS 20 s 2100 MW [12]

August, 1988 Miami, FPL 10 s 825 MW Load loss due to de-

vice protection

[8]

August, 1987 Memphis,TVA 15s 1265 MW [2]

SCE- Southern California Edison, APS -Arizona Public Service,

FPL- Florida Power and Light company, TVA- Tennessee Valley Authority

motor. Similarly, for scroll type compressors the mechanical load increases when the compressor

turns a scroll to compress the gas.

Figure 1.4 shows a typical torque-speed characteristics for an induction motor. The x-

axis represents the normalized motor speed, where 0 corresponds to blocked rotor condition

and 1 corresponds to synchronous speed. The low mechanical load torque (blue) represents

the situation where the compressor is turning on after several minutes of inaction. The high

mechanical load torque (red) represents the normal operating load under compression. The

high load torque line intersects the zero-speed axis at a point higher than the starting torque

capability of the motor. If the motor were to stall in response to low voltages, then it would

not be able to restart. The stalled motors draw significant current which depresses the voltage.

Typically, residential air conditioner motors are equipped with two types of protection, (a)

Contactors that disconnect when the voltage drops below 40% (b) inverse-time characteristic

current relay (thermal protection). If the stalled voltage is greater than the 40% threshold,
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Figure 1.4: Torque-speed characteristics of small induction motors.

then the stalled motors remain connected to the grid. These stalled motors are eventually

disconnected by thermal protection within a time span of 3-15 seconds. As the motors are

tripped off, the voltage recovers gradually. The gradual recovery in voltage is due to the

fact that all motors are not tripped off simultaneously. The motor remains offline until the

compressor pressure equilibriates and then the motor can restart.

The earlier papers that dealt with the description of FIDVR phenomenon have represented

the mechanical load driven by induction motors using a constant load torque characteristics.

However, the more recent model development and testing conducted by WECC have found out

the following two significant deficiencies with respect to the earlier modeling efforts

1. The torque of the mechanical load driven by induction motor is not constant. The load

torque is position dependent as the motor drives pistons (reciprocating) or turns the

off-center scroll.

2. The inertia of the compressor is over-estimated

The WECC Load Model Task Force has been actively involved in the development of

improved load models for simulating FIDVR phenomenon. Two U.S Department of Energy

Workshops on FIDVR[12],[13] recognized the growing concerns of utilities to the occurrence of

such events. FIDVR is also considered to be a national issue due to the increasing penetration
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of residential AC loads. From the presentations made at the DOE workshops, it is clear that

FIDVR events can be consequential, they persist, and they pose a challenge to the reliable

operation of the power grid.

Recent trends in load modeling research include probabilistic load modeling where param-

eter uncertainties in the aggregated induction motor model and the problem of cascading stall

are considered. The stalling of induction motors due to low voltage is a cascading process in

which stalled motors tend to reduce the bus voltage and in turn make other induction motors

to stall. The typical aggregated induction motors used in time-domain analysis do not capture

the cascading stall. A quasi-static modeling and simulation of cascading induction motors stall

is presented in [14]. In [15], the induction motor loads variations and uncertainty are modeled

in a probabilistic way. To estimate the probabilities of the number of induction motors stalled,

an analytic method to estimate the parameters of a model of cascading failure from system

parameters is derived. This work studies the influence of system parameters on cascading stall

of induction motors.

Characterization of FIDVR events: Next, a review of the methods used to identify and

characterize the FIDVR phenomenon has been provided. The enhanced voltage instability

predictor (VIP) method is used in [11] to identify FIDVR and short term voltage stability

problems. The VIP method is used to discriminate voltage stable cases (FIDVR is treated

as voltage stable) from unstable ones. The VIP method represents the power system using

a Thevenin equivalent and the parameters are recursively estimated at the rate which the

PMU data are measured. Then the relationship between the apparent impedance at the local

bus where the measurements are made and the Thevenin impedance is monitored. When

the apparent impedance is less than the Thevenin impedance it signifies a short term voltage

instability and for stable cases the apparent impedance is greater than the estimated Thevenin

impedance.

In the enhanced VIP method, the calculated ∆Q margin is used to identify the FIDVR

events. The Q-margin is computed and tracked in real time and it provides the amount of

reactive power that can be pulled out of the bus. During FIDVR events, the Q-margin is
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reduced considerably as motors are pulling reactive power from the system. This method works

on the basis that the Thevenin impedance remains constant between successive estimations,

but the Thevenin and load impedance are not constant during varying system conditions.

Slope based techniques and integral error based methods are the two broad categories used

to quantify FIDVR. In [16, 17], slope based voltage recovery calculation is used to predict

FIDVR events. Successive voltage measurements are used to calculate the slope of the voltage

recovery trajectory. Using this slope the expected voltage recovery for the future time is

predicted. The predicted voltage recovery is compared with the specified transient voltage

recovery criteria for identifying FIDVR events. For the identification of FIDVR using steady

state screening of buses, MVA-Volt index is proposed in [18]. The MVA-volt index is summation

over all system buses of load MVA times voltage depression from the nominal value during a

three phase fault at any bus.

Integral error based measure could not differentiate between two different voltage trajecto-

ries - one showing moderate recovery, the other showing fast recovery over a small period of

time. On the other hand, any measure based on the slope or the derivative of the voltage tra-

jectory will suffer in case of oscillations or sudden almost discontinuous changes in the voltage

magnitude.

Dynamic VAR planning methods: In the following sections, the methods that are used for

dynamic VAR planning has been reviewed. Choosing the optimal location and size of reactive

power injection devices has been considered a challenging multi-objective optimization prob-

lem. This problem has been approached with a range of methodologies of various complexity

levels. The available methods can be broadly classified under steady state based techniques

and dynamic analysis based methods.

Traditionally the problem of dynamic VAR allocation has been approached using steady

state techniques like OPF to identify the optimal locations and amount and time domain sim-

ulation is used for checking transient voltage performance. OPF is used to identify reactive

deficient locations and if the number of locations identified by OPF analysis is large, they are

clustered into small groups due to economic and site related limitations. Certain key bus loca-
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tions are chosen among the clustered groups for reactive compensation and the compensation

amount is refined to match the steady state requirements. Then time domain simulations are

performed to identify the right mix of static and dynamic VArs needed to the meet the specified

performance criteria.

In the ERCOT CREZ reactive power compensation study, conducted by ABB, the size and

location of dynamic reactive compensation have been identified using steady state analyses

techniques like optimal power flow, PV, QV analysis in combination with dynamic simulations

[19]. A summary of tools and methodologies to perform comprehensive voltage stability studies

for the identification of reactive power requirements is provided in [20] and [21]. The process

involved in identifying the reactive requirements and the criteria used for fixing the problem in

Entergy system is presented in [22].

Steady state based techniques works on the basis that the reactive deficient locations found

using OPF methods are more prone to FIDVR problems. Therefore, these reactive deficient

locations can serve as good locations for dynamic VAr installation. However it is possible that

there are no problems (reactive deficiency) in the steady state analysis, but still the problem

of FIDVR occurs in the time domain analysis. It is due to the fact that the problem of FIDVR

is mainly influenced by the high concentration of induction motor loads and its dynamics.

Without proper consideration of the load dynamics, it is not possible to detect FIDVR events.

This necessitates the need for systematic dynamic analysis methods while dealing with FIDVR

problems. Time domain simulation with proper representation of appropriate load models plays

a crucial role in dynamic VAR planning studies.

In [23] a time continuation single phase quadratized power flow method is used to find the

location and amount of static and dynamic VAR resource needed to alleviate the risk of short

term voltage instability problem. This method uses a quasi steady state load models coupled

with quasi-dynamic models of generators. Trajectory sensitivity methods are then used to

linearize the non linear optimization problem which in turn is solved using linear programming

techniques. This method is better than the steady state based approaches but still it cannot

capture the full dynamics of the system because it uses only a quasi steady state model of
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generators and loads. Also this approach uses linear programming to find the required VAR

amount it may not be the same optimal amount obtained by solving a non linear optimization

problem.

In [24] the problem is formulated as mixed integer linear optimization and is solved iter-

atively. Instead of using power flow and dynamic power system models, linear sensitivities

are used to formulate the constraints and to find the optimal VAR amount. The LP problem

is formulated based on the sensitivities of voltage dip time duration to SVC capacity limit.

Margin sensitivities are used to identify the change in voltage stability margin (VSM), which

in turn is used to rank order the severe contingencies and identification of potential candidate

locations. This screening process is capable of identifying steady state issues, but not the

transient issues. For identifying transient voltage problems, the information from steady state

screening process combined with prior knowledge of the system and engineering judgement is

used to identify critical contingencies and potential candidate locations for placing dynamic

VAR sources. The behavior of voltage during fast voltage collapse is highly non-linear and

this raises the question whether use of LP formulation is sufficient for solving dynamic VAR

placement problem? Also, is there a systematic way to gain knowledge about the system for

identifying critical contingencies and potential candidate locations?

In [25], the concept of trajectory sensitivity index (TSI) is proposed to identify the most

efficient candidate locations for providing dynamic VAR support for a single contingency case.

TSI of a particular bus measures the change in voltage levels at all the buses for an injection

of dynamic VAR at the bus where TSI is calculated. The buses that have higher values of TSI

are selected as the best candidate locations for the placement of dynamic VAR sources. This

method does not provide how much amount to be placed at the chosen candidate locations.

Also, the value of TSI is calculated by considering VAR injection at only one location at a

time. This method does not consider the effects of VAR injections at multiple locations at the

same time.

In [26] dynamic VAR allocation problem is formulated as mixed integer dynamic optimiza-

tion problem and is solved by converting the optimization problem into a mixed integer non
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linear problem (NLP). The conversion to mixed integer non linear program is done by full

discretization of state and control variables. An algorithm based upon trajectory sensitivity

analysis is used to select candidate VAR locations. Although this method finds the optimal

amount and location of dynamic VAR resources needed to ensure acceptable transient volt-

age performance, the size of optimization problem increases dramatically as the system size

increases. Even though mixed integer dynamic optimization described in [26] provides a sys-

tematic way of finding the optimal amount of dynamic VAR resource needed to solve fast

voltage collapse and slow voltage recovery problems, it suffers from the problem of solving

large dimension non linear optimization problem as the power system size increases. This curse

of dimensionality makes it difficult to implement this method for large scale realistic power

system. Also, implementing the advancement in modeling and solving power system DAEs is

quite complicated and tedious because of unavailability of proprietary legacy source codes.

The use of dynamic optimization is very limited in power system due to its computational

complexity. However, increasing trends are observed that more researchers are working on

migrating power system applications to dynamic optimization formulation for its compact form

in mathematics, especially when concerning dynamics of power systems. Research efforts have

been made to use dynamic optimization methods to solve other power system power systems

problems like stability constrained optimal power flow (SCOPF). Direct discretization methods

[8], [9] and constraint transformation methods [10] are considered as the two main approaches

in the existing literature to deal with DAEs in SCOPF problems. The direct discretization

method attracts more research efforts for its flexibility and the utilization of state of the art

NLP techniques. However, conventional direct method based on interior point method (IPM)

as NLP optimizing algorithm usually suffers from low computational efficiency as well as huge

memory consumption, especially for large-scale problems and multiple contingencies. As a

countermeasure, reduced-space IPM (RIPM) is proposed as an important extensions of IPM

to accelerate the process of solving primal-dual system in a mathematically equivalent way.
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1.3 Thesis Objective

The objective of this work is to develop a comprehensive methodology which can determine

the optimized dynamic reactive power compensation (location and level) that is needed to

maintain the system short term voltage stability, following a large disturbance. This approach

should be valid for a range of operating conditions and contingencies. In contrast to previ-

ous approaches, this work evaluates the reactive power needs dynamically and in the transient

time frame. The focus is on developing study methodology, procedures and tools to support

transmission operators and planners in predicting potential large-disturbance/short-term volt-

age instability fast voltage collapse or slow voltage recovery incidents, and in planning for and

managing the reactive power resources to address such incidents.

1.4 Organization of Thesis

This dissertation includes three major parts - (a) dynamic VAR planning using dynamic

optimization, (b) behavioral classification of contingencies and scenarios, (c) identification of

dynamic voltage control area. The rest of this dissertation is organized as follows:

Chapter 2 describes a dynamic optimization based approach to optimize the location and

amount of dynamic reactive power required to mitigate FIDVR problems for a single contin-

gency. The formulation and implementation of a dynamic optimization method are provided.

The method has been tested on the IEEE 162 bus system and a large realistic system in the U.S.

and the simulation results have been discussed in detail. The role of trajectory sensitivities,

singular value decomposition, linear programming based solutions in improving the solution

efficiency of the dynamic optimization are also discussed in this chapter.

Chapter 3 discusses a novel entropy based Kullback-Liebler (KL) measure for the quantifi-

cation of voltage recoveries. Utilizing the KL measure, contingencies are grouped into different

clusters according to their behavioral similarity using a spectral clustering algorithm. The

contingency clustering provides representative contingencies that covers wide range of similar

contingencies under various operating conditions. Simulation results have been performed on

the modified IEEE 162 bus system to test and validate the proposed method.
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Chapter 4 describes a new concept named dynamic voltage control areas (DVCAs). The

concept of DVCA identifies groups of weak buses vulnerable to short-term voltage problems un-

der a given set of contingencies and also the most effective control locations to provide dynamic

reactive support to achieve satisfactory dynamic voltage performance. DVCA identification in-

volves the process of contingency clustering and a mixed inter linear programming (MILP)

routine.

Chapter 5 discusses an improved dynamic optimization formulation using KL measure to

refine the amount of dynamic VARs required to avoid short-term problems within each DVCA.

The dynamic optimization framework discussed in chapter 2 is modified and extended to over-

come the curse of dimensionality while handling multiple contingencies under various operating

conditions. All concepts have been tested and validated using simulations based on the modified

IEEE 162 bus system.

Chapter 6 presents conclusions and significant contributions of this work, and discusses

possible future works.
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CHAPTER 2. DYNAMIC OPTIMIZATION USING VOLTAGE TIME

SERIES

2.1 Introduction

In this chapter, the optimal amount and locations for installing dynamic reactive resources

to mitigate slow voltage recovery problems, for a single contingency, are found by dynamic opti-

mization approach. Control vector parameterization (CVP), a dynamic optimization approach,

is used to formulate the dynamic reactive resource allocation problem. The dynamic optimiza-

tion ensures satisfactory performance in system voltages during the transient period. The CVP

approach considers the dynamics of the system while performing the optimization. In the CVP

approach, the process of finding the power system differential and algebraic equations (DAE)

is decoupled from the optimization routine and communications of results between these two

modules enables to arrive at the optimal solution. This feature of CVP enables us to utilize the

commercial grade DAE software and commercial grade non-linear programming (NLP) solvers

for finding the optimal solution of the dynamic reactive resource planning problem. With an

integration of commercial grade DAE solver and optimization solver, large scale problems can

be solved efficiently. The formulation and implementation details of CVP based dynamic VAR

planning for a single contingency are discussed in this chapter. The CVP based dynamic opti-

mization approach is tested on the IEEE 162 bus system and on a realistic power system in the

U.S. First, the study results based on IEEE 162 system with detailed air-conditioning model

is presented to show the need for the dynamic optimization approach. Next the scalability of

the proposed approach is demonstrated by applying this method to a realistic power system in

the U.S.
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2.2 Motivation and Proposal

The challenging task of choosing the optimal location and amount of reactive resource has

been explored in the literature using many methodologies, but the research in this area is far

from being perfect. Most of the methods use time domain simulation as a means to check

the performance of voltages during dynamic analysis. Dynamic analysis is not considered

explicitly during the process of identifying the optimal locations and amount, mainly because

of the computational difficulties involved in such procedure. But time domain simulation with

proper representation of appropriate load models plays a crucial role in dynamic VAR planning

studies. If system dynamics are not taken into account properly, the proposed control solution

may be an expensive over design or an under design which is not capable of mitigating FIDVR

problems completely. This brings out the need for the use of dynamic optimization in dynamic

VAR planning studies.

Direct simultaneous based dynamic optimization has been used in the literature for dynamic

VAR planning. However, this method suffers from the curse of dimensionality as the power

system size increase. To overcome this issue, a direct sequential based dynamic optimization

formulation has been proposed in this work. The main motivation behind using this method is

to separate the dynamics of power system from optimization problem part and utilize commer-

cial grade software to solve power system dynamics and optimization. This approach considers

the dynamics part during the optimization procedure, but performing dynamics simulations

are clearly separated from the optimization procedure. This feature of this approach will help

to easily extend this method for large scale power system.

The following section provides background material related to various dynamic optimization

methods. .

2.2.1 Dynamic optimization - background information

Dynamic optimization is a class of optimization problems where the optimal solution is ob-

tained by considering the dynamics of the system. Mathematically, the dynamic VAR allocation

problem can be modeled as a dynamic optimization problem. Dynamic Optimization [27] is an
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optimal control problem (OCP), where the optimum values for control and parameters which

minimize a certain performance measure are identified. The optimal control should satisfy the

dynamics of the system and also the path constraints on system variables. If the objective

function has integer variables, then the OCP becomes a mixed integer dynamic optimization

(MIDO) problem. In general the OCP is defined as given in (2.1).

minimize
tfinal,u,p

J = φ(tfinal, u, p, z) +

∫ tfinal

t0

L(x, u, t, p, z)dt

Subject to

ẋ = F (x, u, p)

0 = G(x, u, p)

ci(x, u, p) ≤ 0

t ∈ [t0, tfinal] , zi ∈ [0, 1]

x ∈ Rnx , u ∈ Rnu , p ∈ Rnp

(2.1)

The objective function of the general OCP problem is given by J and it has two parts -

(a) Mayer type, which depends upon final time (tfinal) constraints and (b) Lagrangian type,

which is given by the function L. In OCP, the variables are separated into two classes namely

the state variables (x) and control variables (u). The evolution of state variables is dictated

by the control variables, via a set of differential and algebraic equations (DAE), which are

specified by functions F and G in (2.1). Further, the control and state variables are subjected

to performance constraints give by Ci. The parameters and binary variables in the system

are denoted by p and z respectively. The number of state variables, control variables and

parameters are given by nx, nu and np respectively.

Numerous analytical and numerical based methods are available to solve the OCP, which

are broadly classified into indirect and direct methods. Indirect methods such as Bellman’s

optimality principle and Pontryagin’s maximum principle are analytical methods and they are

based on the principle of variations[28]. The application of this method to VAR allocation

problem is very difficult because of the complexity and size of the problem.
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Direct methods are based on the principle of discretizing the optimal control problem and

then applying the non-linear programming (NLP) techniques to the resulting optimization

problem. These methods take the advantage of the state of the art NLP solvers. Also, these

methods can be applied to system described by ODE (ordinary differential equations), DAE

and PDAE (partial differential and algebraic equations) models [4]. The three main variants

of direct method of solving optimal control problems are direct simultaneous approach, direct

sequential approach and multiple shooting methods [29].

Direct simultaneous approach transforms the OCP problem by discretizing the constraint

differential and algebraic equations (DAEs) into a set of algebraic equations at every simulating

time steps. This method is also referred as state vector parameterization (SVP) or full dis-

cretization method or orthogonal collocation method. There are various discretization schemes

such as Implicit Euler method, Trapezoidal method and Radau collocation on finite elements to

transform the dynamic optimization problem into a non-linear programming problem. The full

discretization method tries to satisfy the dynamic equations and optimality conditions together.

As the size of the power system increases, the resulting NLP size will increase and obtaining a

solution will be difficult due to convergence problems. Besides the curse of dimensionality, due

to the close coupling between model and optimization in the discretization process, detailed

dynamic models are difficult to embed into dynamic optimization.

The direct sequential method translates the optimal control problem into an NLP by only

discretizing the control variables. The system dynamics are still embedded in the NLP problem,

but are handled separately by a numerical integrator. This method is also referred as control

vector parametrization (CVP). The NLP algorithm adjusts the control variables based on

violation of constraints on state variables generated by system dynamics solver and the gradient

information. The gradient information provides details on how the objective function and

constraints vary for a change in the control variables. With this approach, large scale dynamic

optimization problems can be handled in a better way compared to simultaneous approach.
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2.3 Formulation of the Dynamic Optimization Problem

Of the dynamic optimization methods available in the literature, CVP is well suited for

dynamic VAR allocation problem because of its decoupling feature that separates the power

system dynamics solution procedure from the optimization routine.

2.3.1 Objective function:

The objective function of the dynamic VAr allocation problem is to minimize the number of

locations and the maximum amount of dynamic VAR at the chosen locations. Equation (2.2)

provides the mathematical formulation of the objective function. Bmax
svc,i denotes the maximum

susceptance of SVC placed at location, ′i′ and Wi denotes the importance (weight) of choosing

location i. The locations of the SVCs are integer variables, denoted as zi, which makes this

optimization a mixed integer dynamic optimization (MIDO), a highly computationally intense

optimization problem.

minimize
Bmaxsvc,i

f = φ =
m∑
i=1

ziWiB
max
svc,i

zi ∈ [0, 1], Wi ∈ R

(2.2)

2.3.2 Constraints

2.3.2.1 Power system dynamics

Power system grid planning and operating decisions rely on simulations of dynamic behavior

of the system. For ensuring reliable and safe operation of the power system, appropriate and

realistic models have to be used in the simulation studies. A power system model consists of

generation, transmission and load models. The individual models of the generator, automatic

voltage regulator (AVR), governor and system loads are given by the differential and algebraic

equations (DAE). The transmission network is modeled using algebraic equations.

ẋ = f(x, y)

0 = g(x, y)

(2.3)
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Equation (2.3) represents the set of DAE equations that represent the power system dy-

namics. The differential and algebraic states are denoted by x and y respectively. f and g

represents the set of differential and algebraic functions respectively.

2.3.2.2 Load modeling

In general, for dynamic simulation studies, loads were represented with static characteristics

with constant current for active power and constant impedance for reactive power. WECC

Modeling and Validation Group (MVWG) has developed a composite load model for dynamic

simulation studies. This composite model is represented as CMLD model in PSSE [4] and

CMPLDW in GE PSLF [30]). Figure 2.1 shows the representation of CMLD composite load

model. This model simulates the dynamic behavior of an aggregate of three phase induction

motors, single phase air conditioner motor, electronic loads and static loads connected to a

low voltage load bus. The composite load models has the capacity to represent three different

types of three phase induction motor loads namely three phase motors driving constant torque

loads, torque speed-squared loads with high inertia and torque speed squared loads with low

inertia. A single phase air conditioning load is also included in the composite load model

structure. This is a grid level model representing an aggregation of a large set of single-

phase air conditioners. These motors stall when voltage drops below certain set value and a

portion of these motors restart when voltage recovers. In addition to representing the mix

of loads at the low voltage bus, this model also includes an equivalent circuit of distribution

transformer, substation compensation (Bss), and distribution feeder equivalent (R + jX) and

feeder compensation (B1 and B2). The composite load model has under-voltage and under-

frequency load shedding protection, which trips a portion or entire load. The dynamic response

is reflected at the high voltage system bus.

The following description of model structure and characteristics is an adoption from [3].

Distribution system equivalent represented with a π model captures the voltage drop, real

and reactive power losses in primary distribution circuits, distribution transformers and sec-

ondary distribution circuits. Typical distribution feeder equivalent data have 4-6% voltage

drop, R
X ratio of 0.8, shunt compensation at feeder end is 75% and end use utilization voltage is
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Figure 2.1: CMLD composite load model structure [4]

assumed to be greater than 95%. One of the limitations of this equivalent feeder representation

is that it assumes balanced load response of all three phases, since this model is part of a

positive sequence program.

Three phase induction motors are represented by CIM6 models from PSSE standard model

library. The CIM6 models have detailed representation of electromagnetic dynamics of the

motor and rotating load dynamics. In CIM6 type of models, both single-cage and double-

cage induction motors are represented using the equivalent circuit impedances. The equivalent

circuit of the induction motor can be represented using either Type 1 or Type 2 model as

shown in fig.2.2. The equivalent circuit parameters are translated into transient parameters

corresponding to flux linkage components for use in the actual model calculations.

Figure 2.2: Induction Motor Equivalent Circuit [4]
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In the CIM6 type models, the mechanical load torque,Tload, is represented using (2.4)

Tload = T0(Aω2 +Bω + C0 +Dωε)

C0 = 1−Aω2
0 −Bω0 −Dωε0

ω0 = 1 + ∆ω

(2.4)

The parameter D represent the load damping factor. The variables Tnom corresponds to motor

load torque at synchronous speed, ω is the current motor speed, ω0 is the initial motor speed

and ∆ω correspond to per unit slip.

During initialization of the model, first the total power for the specified load is obtained

from the powerflow data. Along with the equivalent circuit impedance and bus voltage, this

value is used to calculate the initial slip and actual reactive power consumption of the motor.

If there is reactive power difference between the specified load Q and the calculated Q, then

it is adjusted by the assignment of a hidden shunt at the corresponding load bus. Based on

the motor load and the initial slip, then model then calculates Tnom in order to balance the

electrical and load torque in the steady state. The inertial time constant of the small induction

motor has a direct effect on the electrical dynamics of the motor.

Single phase AC motor model has the representation of compressor motor, compressor

motor thermal relay, under-voltage relays and contactors. A schematic diagram of this single

phase AC motor performance model is shown in figure 2.3. Motor A and Motor B represents

the two categories of aggregated compressor motors. Depending upon the input voltage, the

motor operates either in ’running’ or ’stalled’ state. Motor A will not restart once it enters the

stall state, whereas motor B has the capability to restart. The stalled motors corresponding

to type A category are eventually tripped by thermal relays. KthA and KthB represent the

fraction of motor A and motor B loads that are not tripped by thermal relay. KUV and KCON

represent the fractions of motor load that are not tripped by under-voltage relay and contactors.

respectively.

Equation (2.5) and (2.6) relates the voltage to real and reactive power of the single phase

AC motor under running and stalled conditions respectively. The parameters a1−a4 and b1−b4

are temperature dependent and are represented by expressions a(T ) and b(T ) in (2.5).
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Figure 2.3: Performance model of single phase induction motor model [4]

Figure 2.4: Performance model characteristics of compressor motors [4]
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Prun = a1 +
a2

V − a0
+ a3(V − a0) + a4(V − a0)4

Qrun = b1 +
b2

V − b0
+ b3(V − b0) + b4(V − b0)4

ai(T ) = c0 + c1T + c2T
2, ∀i = 1, 2, 3, 4

bi(T ) = d0 + d1T + d2T
2, ∀i = 1, 2, 3, 4

(2.5)

Pstall = Kp1V
3 +Kp2V

2.

Qstall = Kq1V
3 +Kq2V

2.

(2.6)

The thermal protection relay in single phase AC motors prevents the motor from overheat-

ing. Figure 2.5 shows the characteristics of the thermal relay model, defined by the tripping

temperatures, Th1t and Th2t. Th1t is the temperature at which compressor motor begins

tripping and Th2t is the temperature at which all compressor motors are tripped. Equation

(2.7) is used to compute the winding temperature (Tw). Ic represents the compressor motor

current, Tth represents the compressor motor heating time constant and Rstall denotes the stall

resistance of the motor. Based on the computed winding temperature and thermal relay trip-

ping characteristics, the fraction of motors that are not tripped by thermal protection, Kth, is

calculated.

Figure 2.5: Thermal relay model of compressor motors
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Tw =
1

1 + sTth
(I2
c ∗Rstall) (2.7)

The compressor motor has a definite-time under-voltage relay with two thresholds. If the

input voltage stays below the threshold value for the specified time period then the fraction

of motors, which has under-voltage relay, will be tripped and are not re-connected during the

simulation.

The power contactors energizes the compressor motors. The fluctuations in the input volt-

age affects the ON-OFF status of the contactors. The contactors open when the control voltage

drops to 40-45%, and re-close when the control voltage restores above 50-55% range. The con-

tactor model determines the fraction of motors that do not drop (Kcon) out because of dip in

the input voltage. .

2.3.2.3 Dynamic VAR model

SVC is a regulated source of leading or lagging reactive power, whose output varies in

response to the demands of automatic voltage regulator. It can maintain virtually constant

voltage for dynamic events at the point in the network to which it is connected. It is comprised

of inductive and capacitive branches that are controlled by thyristor valves and connected in

shunt to the transmission network via a step-up transformer.The thyristor control gives the

SVC the characteristics of a variable shunt susceptance. SVC responds very rapidly to the

changing network conditions such as contingencies. Unlike mechanically switched compen-

sation, SVCs can operate repeatedly and is not encumbered by the delays associated with

mechanical switching. SVC can respond dynamically in 20 to 60 milliseconds.

The static VAr devices are represented as generators in the power flow simulation. In the

dynamic simulation, they are represented using CSVGN5, which corresponds to a static var

system model in the PSSE program [4]. This model has fast override capability which is ac-

tivated when the voltage error exceeds a threshold value. It does not separate the equipment

to identify capacitor banks and reactors.If the output of the SVC, Bmax
svc is positive then the

capacitor banks in the SVC equals to Bmax
svc times the MVA rating of the generator. If the value
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of Bmax
svc is negative then it consists of only reactors. The objective of the dynamic optimization

is to find the optimal values of Bmax
svc at the chosen locations.

2.3.2.4 Voltage Performance Constraints

Historic voltage assessment practice mainly relied on two factors - (a) magnitude of voltage

dip and (b) duration of voltage dip. A comprehensive survey of transient voltage dip criteria

from utilities, reliability councils, relevant standards, and industry-related papers is presented in

[5]. A literature review of industry standards and other technical publications on the influence

of voltage on typical protection and controls is provided in [31]. There is a wide variation in the

tolerance level of voltages for contactors, relays, large air conditioners and motor protection.

They drop out when the voltage magnitude drops to 60%-75%of its nominal value. There are

no common practices for motor under-voltage control and protection, especially for smaller

equipment. For power electronic loads, Information Technology Industry Council (ITIC) has

provided the voltage tolerance curve as shown in fig.2.6. To avoid undervoltage conditions,

ITIC curve states that the voltage dip should not exceed 30% from 1.2 cycles to 30 cycles.

Further, the voltage dip should not exceed the 20% limit from 30 cycles to 600 cycles and after

10 seconds it should not exceed the 10% limit. WECC transient voltage dip criterion states

that for a Category B disturbance (single element outage), should not cause a transient voltage

dip that is greater than 20% for more than 20 cycles at load buses, or exceed 25% at load buses

or 30% at non-load buses at any time other than during the fault [5]. Also, the steady state

voltage limit prescribes at steady state voltage values should be between the bound of 95% to

105%. Figure 2.7 summarizes the WECC voltage performance criteria.

It has to be noted that the WECC transient voltage performance criteria was originally

formed based on rotor angle stability requirements. However, this criteria has been applied by

many utilities for general transient voltage performance studies. The use of this criteria may

be over-conservative, since the criteria were not developed with the specific consideration of

FIDVR phenomenon. The WECC modeling and validation group is working on voltage ride-

through envelope for power plants during FIDVR events. [6]. Figure 2.8 shows the proposed
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Figure 2.6: Information Technology Industry Council voltage tolerance curve [5]

Figure 2.7: WECC Voltage Performance Criteria [5]
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voltage ride-through envelope for power plants.

Figure 2.8: Proposed WECC voltage ride-through envelope for power plants [6].

0.70V 0
i ≤ Vi(t) ≤ 1.30V 0

i , ∀t ∈ [tc + 0.5s, tc + 2s]

0.80V 0
i ≤ Vi(t) ≤ 1.10V 0

i , ∀t ∈ [tc + 2s, tc + 5s]

0.95V 0
i ≤ Vi(t) ≤ 1.05V 0

i , ∀t ∈ [tc + 5s, tfinal]

∀i ∈ Monitored buses

(2.8)

Ic :=
{
tcs | V (tcs) = 0.7V 0, ∀t ∈ [tc, tfinal]

}
tf =


inf {Ic} , if Ic 6= ∅

tfinal, if Ic = ∅ & v(tc) < 0.7V 0

I1 :=


[tc, tf ], if (tf − tc) ∗ 60 ≥ 20cycles

∅, otherwise

(2.9)

The constraints are formulated based on WECC voltage performance criteria and also the

proposed voltage ride through requirements for power plants by the WECC modeling and

validation group. An envelope of voltage performance criteria as given in (2.8) for the set of

monitored buses is used as constraints in the optimization problem. The set I1 defined in (2.9)

is used to capture the delayed recovery phenomenon, as given by WECC voltage performance
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criteria. Equation (2.10) is used as a constraint in the optimization problem to avoid the

transient voltage dip. If the voltage profile at all buses adheres to the above described voltage

performance criteria, then the occurrence of delayed voltage recovery events can be avoided to

a significant extent.

τ := {tend − tstart|[tstart, tend] ∈ I1 ∪ I2}

τij ≤ 0.33(= 20cycles)

∀i ∈ LB, j ∈ R

(2.10)

2.4 Implementation of CVP Approach

The overview of implementation of the dynamic reactive resource planning as a control

vector parameterization problem is shown in Fig. 2.9. The following description provides the

steps involved in implementing the dynamic optimization based reactive resource allocation.

Step 1 : Setup appropriate power flow and dynamic database suitable for studying FIDVR

phenomenon (e.g. a summer scenario). The dynamic database should include detailed load

model, especially induction motor models.

Step 2 : Perform time domain simulations to calculate sensitivities of bus voltages with respect

to reactive power injections at various locations.

Step 3 : Identify the potential candidate locations for dynamic VAR allocation using TSI and

the relative weights of chosen locations are obtained using SVD analysis. The information

obtained from TSI and SVD analysis are used in the formation of NLP objective function.

Step 4 : Perform LP analysis to initialize the control variables of the NLP optimization problem.

The control variables are the maximum value of SVC susceptance needed at chosen candidate

locations.

Step 5 : Set up the interface between optimization routine and power system dynamics solver.

Initialize the parameters for the optimization routine.

Step 6 : The dynamics of the power system are solved separately using any standard power

system dynamics program with the current value of control variables provided by the optimiza-

tion routine.
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Figure 2.9: Implementation of CVP approach

Step 7 : The results from the power system dynamics solver are fed back to optimization routine

and are used to evaluate the constraints and gradients of the optimization program.

Step 8 : Check whether optimality conditions for local optimal solution given in (2.11) are met.

If yes, the optimization routine proceeds to step 9. If not the optimization routine updates

the control variables and repeats from step 6. The control variables are updated using the

gradient information provided by the optimization routine. Equation (2.11a) gives the first
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order necessary conditions for finding a local optimal solution and (2.11b) and (2.11c) provides

the complementarity condition.

∇f(y) +
m∑
i=1

λci∇ci(x, y) +
n∑
j=1

λbj = 0 (2.11a)

λci .min
[
(ci(x, y)− cLi ), (cUi − ci(x, y))

]
= 0, i = 1 · · ·mc (2.11b)

λbj .min
[
(yj − bLj ), (bUj − yj)

]
= 0, j = 1 · · ·nx (2.11c)

Step 9 : If all the optimality conditions and stopping criteria specified by (2.13) are met,

then an optimal solution is found.

The feasibility error at a given point y, is the maximum violation on the constraints c(x,y) and

bounds on the decision variable y. Optimality error is the maximum violation of the optimality

conditions given in (2.11).

FeasErr = max
i,j

(
0, (ci(x, y)− cUi ), (cLi − ci(x, y), (yj − bUj ), (bLj − yj)

)
(2.12)

The optimization criteria used for terminating the optimization program when it reaches a

local optimum solution is given by (2.13). Details of the optimization criteria are provided in

[32] and its implementation is given in [33].

FeasErr ≤ max(τ1 ∗ feastol, feastol abs) (2.13a)

OptErr ≤ max(τ2 ∗ opttol, opttol abs) (2.13b)

τ1 = max
(
0, (ci(y

0)− cUi ), (cLi − ci(y0), (y0
j − bUj ), (bLj − y0

j )
)

(2.13c)

τ2 = max(1,

∥∥∥∥∇f(y))

∥∥∥∥) (2.13d)

2.5 Improving Solution Efficiency

2.5.1 Trajectory sensitivity analysis

In order to reduce the computational burden, first the optimal locations for SVC placement

are identified through the trajectory sensitivity analysis method [25]. The trajectory sensitivity
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analysis method finds the influence of a particular location for the placement of dynamic VAR

resource. The trajectory sensitivity index, TSIj is used to identify buses that have the most

influence on the voltage magnitude of other system buses, for an injection of reactive power

at a particular bus ’j’ as shown in (2.14). ∂Vi
∂Qj

provides the change in voltage at bus i for a

reactive power injection at bus j. Wk and Wbi denotes the weighting factor to designate the

importance of time instant k and bus i respectively. If the value of TSI at a particular bus

is large then the corresponding bus has more influence for placing dynamic VAR source. The

variable z in (2.2) is assigned a value of 1 for the influential buses which form the initial set of

candidate locations.

TSIj =

Tk∑
k=1

Wk

[ N∑
i=1

Wbi

[ ∂Vi
∂Qj

]
t=tk

]
Wk ∈ [0, 1], Wbi ∈ [0, 1]

(2.14)

2.5.2 Singular value decomposition

For finding the relative importance between the initial set of candidate locations singular

value decomposition (SVD) method is utilized. Singular value decomposition is a method

for identifying the direction along which the inputs exhibit the most variation. This method

transforms correlated variables into a set of uncorrelated ones that better expose the various

relationships among the original data items in the sensitivity matrix. By performing singular

value decomposition on the sensitivity matrix (∆V
∆Q), the high dimensional, highly variable set

of data points can be reduced to lower dimensional space that clearly exposes the substructure

of the original data and orders it from most variation to the least. SVD analysis provides the

direction information of the inputs and how it affects the outputs.

The sensitivities computed at specified time instants in the trajectory sensitivity analysis

considers reactive power injection at a specified location and does not account for the cross

coupling effect from other buses. In order to account for reactive power injections at different

locations, sensitivity matrices are formed with the use of trajectory sensitivities at specified

time instants as shown in (2.15). SVD analysis will provide the weights Wi in (2.2).
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∆V1

...

∆Vi
...

∆Vn


=



∂V1
∂Q1

· · · ∂V1
∂Qj

· · · ∂V1
∂Qm

... · · ·
... · · ·

...

∂Vi
∂Q1

· · · ∂Vi
∂Qj

· · · ∂Vi
∂Qm

... · · ·
... · · ·

...

∂Vn
∂Q1

· · · ∂Vn
∂Qj

· · · ∂Vn
∂Qm


(t=tk)



∆Q1

...

∆Qj
...

∆Qm


(2.15)

Singular Value Decomposition performed on the sensitivity matrix, S decomposes it to

scaling matrix (Σ) and output (U) and input (V) direction matrices. The most efficient input

direction, D, is found using (2.16), which is then used to define the weights of each candidate

location. Since the optimization is formulated as a minimization problem, least cost (weight,

W ) is assigned to the most influential location.

S = UΣV∗,U ∈ Rm×m,Σ ∈ Rm×n,V ∈ Rn×n

D = Vi,t | i ∈ max(σi,t ‖Ui,t‖1),∀t ∈ [tc, tfinal],

Candidate locations weight,W ∝ 1

D
,W ∈ Rn

(2.16)

2.5.3 Linear programming for initialization

minimize
Qj

fLP =

Nj∑
j=1

sj(t)Qj

Subject to: V min
i ≤ |V 0

i (t)|+
Nj∑
j=1

∂|Vi(t)|
∂Qj

Qj ≤ V max
i

Qminj ≤ Qj ≤ Qmaxj

|V min
i (t)| = 1.15|V 0

i (t)|

V max
i = 1.05p.u

Instead of arbitrarily guessing a starting point, using the results from a LP approach as a

starting point for the NLP program, results in a more reliable and efficient convergence to the

final optimal solution. In the LP problem, as shown in (2.5.3), the objective function to be

minimized is the total injected reactive power with constraints on the voltage level and SVC
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size. The trajectory sensitivities, sj(t), are used as weights in the objective function of the LP

problem.

At each time step the optimization function will calculate the least required amount of VAr

injection needed to increase the voltage level by 15% above its uncompensated value (V 0
i (t))

for each load bus. The value of 15% increase was chosen to minimize the number of unsolved

(infeasible) cases in the optimization procedure and it also provides a reasonable recovery rate

for voltage levels at load buses.

QT =

∑Nk
k=1[

Qj
fLP(Qj)

]t=tk

Nk
(2.17)

In order to achieve one set of optimal VAr locations a weighted averaging procedure, given in

(2.17), is used with higher weights associated with critical time instants. Critical time instants

refer to the time instants following the fault clearing time when the voltage levels are at their

lowest point. The averaged reactive power injection values QT is used as an input for the CVP

approach.

2.6 Simulation Results

The study results based on IEEE 162 bus system and a large scale realistic system in the

U.S. are provided in this section. The power system dynamics are solved using PSS/E and the

optimization is performed using KNITRO, a third party library available in MATLAB [33].

The interior point algorithm with the finite difference gradient method is used in the NLP

optimization algorithm. The application programming interface between the power system

DAE solver and the optimization solver is made using PYTHON.

2.6.1 IEEE 162 bus system

The 162 bus system has 17 generators, 111 loads, 34 shunts, and 238 transmission lines [34].

The total generation is 15,546 MW, while the total load is 15,387 MW. This test case consists

of one area and twelve zones.
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In order to select the most severe credible contingency, several three-phase faults were

applied at several 345 kV buses located near major load centers, and the voltage dips at the 69

kV load buses were monitored. These faults were cleared after 6 cycles by opening a 345 kV

line. Any bus whose voltage level dips below 50% of its initial level for 0.1 seconds or more is

referred as affected bus. The reason for selecting this criteria is that the voltage dip of 50% or

more at a load bus for at least 0.1 seconds will likely stall the running motors. The criteria for

selecting the most severe contingency are the magnitude of voltage dips at load buses, and the

number of affected buses by that contingency. After the performance of contingency analysis,

a three phase fault on bus 120 which is cleared by opening the line bus 120-5 after 6 cycles is

found to be one of the severe contingency. This contingency has resulted in violations at 12

load buses as shown in table 2.1. For a more accurate load representation, the 12 load buses

that are severely affected by the severe contingency were stepped down through distribution

transformers to the 12.47 kV level, and the new low voltage buses were assigned the numbers

163 through 174.

Table 2.1: Voltage violation buses along with added new low voltage buses.

Bus number Load MW Low-Voltage Bus

111 66.41 163

133 30.1 164

134 17.46 165

135 20.06 166

136 20.06 167

137 20.06 168

139 10.1 169

140 13.58 170

143 21.07 171

144 12.37 172

145 10.83 173

146 21.33 174

Time domain simulation with proper load modeling considerations is required to capture

the FIDVR problem. For the severe contingency case in IEEE 162 test system (Bus fault 120),

without the representation of air conditioner motor loads the problem of delayed voltage recov-
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ery is not even observed as shown in fig. 2.10. Without the representation of induction motor

loads, the voltage magnitude at the representative load buses recovered almost instantaneously

despite the large disturbance which caused a significant voltage dip.
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Figure 2.10: Voltage responses with and without induction motor representation

To capture the dynamic behavior of motor loads, a composite load model represented by

CMDL was used at the new representative load buses in the dynamic simulation studies. The

percentage of three-phase motors driving constant torque loads is 7.2%, three-phase motors

driving torque speed-squared loads with high inertia is 7.2% and single phase air conditioner

load is 45%. Table 2.2 provides the parameters for single phase induction motor models used.

The parameters of three phase large and small motors are taken from Table II in [25].

Table 2.2: Single phase induction motor parameters

Description Variable Parameter Value

Compressor motor stall resistance Rstall 0.124

Compressor motor stall reactance Xstall 0.114

Compressor stall voltage Vstall 0.7

Stall Delay (sec) Tstall 0.33

Fraction of restartable motor Frst 0.8

Restart Voltage Vrst 0.7

Restart Delay (sec) Trst 0.6
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With the representation of dynamic behavior of induction motor loads such as decelerating

and stalling, the phenomena of delayed voltage recovery is observed at those load buses and is

shown in Fig.2.11. The right axis of Fig.2.11 corresponds to the reactive demand of aggregated

AC units at the representative load buses. Since the voltages did not recover above 0.70 p.u

within 20 cycles the single phase induction motors at the representative load buses stalls, which

increases their reactive power demand. If the reactive power demanded from the system is high

for a longer period of time, then the recovery of bus voltages becomes slower.
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Figure 2.11: Representative load buses voltage responses without SVC and aggregated AC
units reactive demands for a three phase fault at Bus 120

From Fig.2.11 it can be observed that the recovery of voltage at bus 163 is slower than that

of at bus 164 because the reactive demand of AC units at bus 163 is higher than that of bus

164. The reactive demand of aggregated AC unit at bus 163 increases from 2.5 MVAR to a

maximum of 22.5 MVAR, whereas at bus 164 it is increased from 1.7 MVAR to 17.5 MVAR

because of stalling of induction motors. Once the voltage recovers above the restart voltage

of 0.7 p.u and after a restart delay of 0.6 seconds, the stalled motors capable of restarting

returns to normal run state. This reduces the reactive demand of the aggregated AC units.

The portion of the motors which are not capable of restarting are eventually tripped by thermal

protection.In order to obtain a comprehensive solution and to test the optimization process over
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Figure 2.12: Voltages at representative load buses with SVC for three phase fault at Bus 120

several buses with different sensitivities, all the high voltage buses which are directly connected

to the representative low voltage load buses are considered as initial candidate buses for VAr

injection in the optimization process. Trajectory sensitivities are calculated numerically using

finite differences and are used in the formation of sensitivity matrices and also in the calculation

of TSI. Trajectory sensitivity index, as reported in column 2 of Table 2.3, identifies the locations

sensitivity to reactive power injections. The best combination of locations for the injection of

reactive power is identified by the singular value decomposition method. The SVD direction in

column 3 of Table 2.3 is used to weight the objective function of dynamic optimization problem.

Table 2.3 summarizes the sensitivity analysis results and the final optimized VAr injection

values from LP and two NLP cases. The column ’Bus’ represents the candidate locations chosen

for SVC installations. The locations are chosen based on the trajectory sensitivity analysis and

the trajectory sensitivity index for the candidate locations are provided in the column TSI

index. In order to find the relative importance of the chosen candidate locations, SVD analysis

is used. The information provided in SVD direction column is used to define the weights Wi

of the non linear programming objective function (2.2).

The column ’Max Bsvc’ shows the maximum amount of SVC required at the candidate

locations obtained using different approaches (a) Linear programming (b) NLP with random

initialization (c) NLP using LP results for initialization. Case A corresponds to random ini-
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Table 2.3: Results Summary - IEEE 162 bus system

Bus

TSI

In-

dex

SVD

Direc-

tion

Max Bsvc (p.u)

LP
Dynamic Optimization

Case: A Case:B

111 39.23 0.1775 0.591 0.7696 0.2252

133 79.80 0.3516 1.486 0.8015 1.2125

134 41.37 0.1852 1.506 0.796 1.0006

135 90.43 0.3587 0.821 0.8034 0.5758

136 92.73 0.3500 0.034 0.701 0.0000

137 94.53 0.3658 0.114 0.8052 0.0253

139 87.54 0.3562 0.06 0.8087 0.7336

140 94.70 0.3646 0.054 0.8057 0.7390

143 136.73 0.2297 0.059 0.7913 0.6112

144 105.43 0.3118 0.194 0.7932 0.0559

145 114.09 0.2967 0.03 0.806 0.6874

146 140.84 0.2243 0.061 0.78 0.6034

Total 5.011 9.4616 6.4699

tialization where reactive power injections at all locations are initialized with a value of 1 p.u.

so that the NLP optimization is started within a feasible region. For case B, the initial amount

of VAr injections at each locations are identified using the linear programming approach.

The optimal SVC values obtained from dynamic optimization make sure that all the load bus

voltages recover above 0.7 p.u within 20 cycles, which is the criterion used in the optimization

procedure. The voltage response at the representative load buses with the use of SVC values

obtained from the case B dynamic optimization procedure is shown in Fig.2.12. With the

optimal dynamic VAr support induction motors run without stalling and the voltage recover

faster once the fault is cleared.

2.6.2 Performance evaluation

2.6.2.1 Comparison of DO with LP based methods

The performance of dynamic optimization results is compared against those that of the LP

based results in the IEEE 162 bus system. In [7], evaluation of an under voltage protection

scheme to take the stalled air conditioner loads off line to prevent slow voltage recovery is
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provided. A similar under voltage scheme based on the WECC performance criterion is used

to test the efficiency of LP and dynamic optimization solutions. The test criterion used for

the performance evaluation is when the voltage at a particular load bus drops below 70% of

its nominal value for more than 0.5 sec then 50% of air conditioning loads at that bus are

tripped. Based on this criteria, Table 2.4 shows the amount of load tripped when LP and

dynamic optimization solution results are used to set the maximum SVC limits. In the case

where weighted LP solutions are used, it was observed that 72.52 MW of load is tripped by

the under voltage relay action. In the case where dynamic optimization solutions are used, no

load is tripped by the under voltage relay action. This shows that dynamic optimization based

approach is effective in mitigating FIDVR problems and able to achieve satisfactory voltage

performance criteria.

Table 2.4: Performance of LP and Dynamic optimization results - 162 bus system

Weighted LP

Bus
Load Shed

Real (MW) Reactive (MVAR)

164 6.64 6.1

165 6.92 6.36

166 6.61 6.08

167 3.7 3.4

168 4.72 4.34

169 6.85 6.3

171 6.4 5.89

173 21.75 20

Total 72.52 66.68

Dynamic Optimization

No Load Trip

2.6.2.2 Comparison of DO with steady state based methods

Several tests were performed on IEEE 162 bus system in order to show the need for dy-

namic analysis methods and show comparison with steady state based approach used in [20].

Preventive Security Constrained Optimal Power Flow (PSCOPF), available in PSS/E, is used

to perform the detailed OPF analysis for the purpose of identifying reactive deficient locations.

All the contingencies in zone 3, where majority of loads are present, is considered for the analy-
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sis. The contingency B120-5, belong to this particular zone. Though only one contingency was

considered for providing the proof of concept for CVP approach, a total of 37 contingencies in

zone 3 are considered for the PSCOPF analysis. From the base case simulations, it was found

that even considering all 37 contingencies there were no steady state voltage violations and no

shunt compensation was needed. However with the base case setup when time domain analysis

with detailed load modeling is performed for the contingency B120-5 the problem of FIDVR

has been observed. Further simulations were carried out for making a comparison between

the locations identified by steady state based approach and our proposed method based on

dynamic optimization. In order to identify the reactive deficient locations using OPF methods,

the system was stressed and the PSOPF analysis was repeated again. The locations identified

by this analysis as opposed to those found using our approach are provided in the table 2.5.

Table 2.5: Locations identified using steady state and dynamic methods

OPF Trajectory Sensitivity

105,111 111, 133, 134, 135,

122, 143 136, 137, 139, 140

173 143, 144, 145, 146

For the contingency B120-5, even after placing large SVC, as high as 5 p.u, at all the loca-

tions identified using OPF analysis, still the problem of FIDVR persisted which can be noticed

in fig.2.13. Figure 2.14 (same as Fig.2.12) shows the voltage responses at the representative load

buses with the use of dynamic VAr obtained from the dynamic optimization procedure. The

locations identified by steady state methods are not enough and ideal for mitigating the FIDVR

problem. This example shows the insufficiency of steady state based methods to identify the

locations for placing dynamic VARs.

2.6.3 Large scale realistic system

In this section, the curse of dimensionality posed by direct simultaneous method and the

scalability of proposed CVP approach to a large scale realistic system are presented. The

large power system that has been considered for analysis has 14043 buses excluding the low

voltage feeders, with a total generation of 135.5 GW coming from 2950 generators. The overall
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Figure 2.13: Voltages at representative
load buses with SVCs at locations provided
by OPF
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Figure 2.14: Voltages at representative
load buses with SVCs at locations provided
by dynamic optimization

system components and the components of subsystem under study are shown in Table 2.6. The

subsystem or study area refers to the region where the voltage stability study is focused.

Table 2.6: Components of overall system and study area

Overall System Study Area

Component Number Component Number

Buses 14043 Buses 948

Plants 2310 Plants 409

Generators 2950 Generators 1140

Shunts 1366 Shunts 361

Lines 11655 Lines 613

Transformers 5023 Transformers 461

Phase Shifters 41 Phase Shifters 0

HVDC Converters 8 HVDC Converters 0

For the considered system, with direct simultaneous method, the number of non-linear

equations after the discretization process will be very large. For example, if we consider only the

dynamics of generator with 4th order model, there will be 11800 (=2950 X 4) equations. For a 5

second simulation period, even a very coarse step of 0.1 is used for discretization, the resulting

number of non-linear equations will be 590 thousand equations. The typical time step used for

power system dynamic simulation is 1/2 of a cycle (0.0083s) or even smaller than this when

induction motor loads are considered. With the addition of dynamic equations of load models,

SVC’s and other system equations will lead to millions of discretized non-linear equations.

Solving these huge set of non-linear equations along with the optimization constraints will quite



www.manaraa.com

44

often lead to infeasibility using the direct simultaneous approach. However, our proposed CVP

approach overcomes this curse of dimensionality by separating the solution of power system

dynamics and utilize the results of dynamics in optimization formulation. The scalability of

the CVP approach to large scale system is shown by applying this method to the most critical

contingency.

The contingencies are screened for bus violations of 1.05 p.u for upper limit and 0.95 p.u

for lower limit. From the full set of contingencies considered, the contingencies that created

the largest number of voltage violations are considered to be critical, and if the power flow

does not converge, then it is considered to be a case of voltage collapse. For the considered N-1

contingencies, there are no cases of voltage limit violations. Therefore N-2 contingencies are

considered and the most critical contingency is a double line contingency at the 500 kV level.

This outage is considered to be feasible since the two lines share a common right of way at a

certain location. This contingency is simulated by creating a three phase fault at around 40%

of one of the 500 kV lines where the probability of fault occurring is high. The fault is applied

at 0.1 second and cleared after four cycles by removing two 500 kV lines.

A significant portion of the total load in the system under study during summer peak is

air conditioning load. These loads should be properly modeled in order to reflect the transient

behavior of the motors during the disturbance. This has been done by including a detailed load

modeling consisting of induction motor loads and static loads in the dynamic data. Within

the study area 372 loads are represented on the 12.5 kV end of the 69/12.5 kV substation

transformer. Each of these load representation includes static loads (28%) and three types of

induction motors (72%) namely large motors, small motors and trip motors. The induction

motors classification is based on the inertia and ability to trip under low voltage conditions.

The approximate constitution of large motors, small motors and trip motors are 10%, 60% and

30% of the total motor load at each load bus. The induction motors are represented using

’CIMTR4’ model available in PSS/E software.
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Figure 2.15: Base case bus voltage responses at different kV levels for the realistic power system
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Figure 2.16: Plot of bus voltages at different KV levels with VAR injection from NLP with LP

solution initialization.

Figure 2.15 shows the base case voltage responses of buses at different kV levels for the

most severe contingency. It can be observed that the fall in voltage level is more pronounced

at the 69 kV buses. In order to obtain a comprehensive solution and to test the optimization

process over several buses with different sensitivities, the voltage sensitivities of several 230 kV

buses that are close to load centers were evaluated. However, since reactive power compensa-

tion is more economically feasible on sub-transmission voltage levels, twelve 69 kV buses that

are connected to the most sensitive 230 kV buses were selected for dynamic VAR injection.
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Trajectory sensitivities are calculated using finite differences and are used in the formation of

sensitivity matrices and also in the calculation of TSI. Trajectory sensitivity indices as reported

in Table 2.7, identify the 69 kV bus location sensitivities to reactive power injections. The best

combination of locations for the injection of reactive power is identified by the singular value

decomposition method. The SVD direction in Table 2.7 is used to weight the objective function

of the dynamic optimization problem.

Table 2.7: Results Summary - Large power system

Bus

Key

TSI

In-

dex

SVD

Direc-

tion

Max Bsvc (p.u)

LP
Dynamic Optimization

Case: A Case:B

100 29.56 0.3345 1.100 0.7447 0.8264

101 32.90 0.4292 0.000 1.3480 0.7776

102 30.05 0.3480 1.074 0.8113 0.1216

103 26.65 0.2178 0.353 0.1193 0.7024

104 29.03 0.2391 0.711 0.3874 0.6269

105 26.69 0.2181 0.672 0.3340 0.6850

106 27.86 0.2268 0.699 0.3646 0.2681

107 31.32 0.2598 0.742 0.4342 0.6527

108 25.27 0.2116 0.674 0.3282 0.6917

109 30.72 0.2595 0.720 0.4152 0.0294

110 26.17 0.2188 0.683 0.3436 0.4208

111 26.74 0.3415 1.475 1.1950 0.2478

Total 6.58 6.8254 6.0504

The weighted averaged values of the optimal VAr injection evaluated by the LP optimization

process reported in column IV of Table 2.7 is used as a starting condition for case B of the

NLP part of the dynamic optimization problem. Case A corresponds to a randomly initialized

starting solution. Column V and VI of Table 2.7 shows the final optimized VAr injection values

from the dynamic optimization procedure.

Figure 2.16 shows the voltage response of buses at different kV levels (500, 230 and 69)

with the final VAr injection obtained from dynamic optimization procedure with LP solution

initialization. The voltage magnitude at all the buses satisfy the WECC voltage performance

criteria with the use of the final solution from the NLP optimization program.
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The results show that using LP results as an initial guess helps to achieve better results in

terms of finding reduced amount of dynamic VAr required compared to random initialization of

dynamic optimization procedure. With the use of dynamic optimization, the optimal amount

of SVC required to satisfy more stringent conditions on voltage recovery such as WECC voltage

performance criteria can be found.

2.7 Conclusions

Short-term voltage instability issue is exacerbated by single-phase low inertia motor loads

that represent residential A/C systems, since they tend to decelerate and stall when their

voltage magnitude drops below a certain level. Motors have an adverse impact on voltage

stability because they consume very large amounts of reactive power within a very short time

during a large disturbance. Therefore, using fast dynamic VAR injection devices was found to

be useful in alleviating reactive power deficiency near load centers throughout this work. With

the use of dynamic optimization, the optimal amount of SVC required to satisfy more stringent

conditions on voltage recovery such as WECC voltage performance criteria is found. The

results shows that using linear programming results as an initial guess to dynamic optimization

program helps to achieve better results in terms of finding reduced amount of dynamic VAR

required compared to random initialization of dynamic optimization procedure.
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CHAPTER 3. CONTINGENCY CLUSTERING BASED ON FIDVR

CHARACTERIZATION

3.1 Introduction

During planning studies due to large number of possible system variations, covering all

combinations is very challenging due to its intense computational effort. Direct extension of

the CVP approach (2) to handle multiple contingencies will lead to a very large scale problem.

To reduce the complexity of this problem, a systematic framework using clustering methods

to identify the most important contingencies that act as a representative of group of similarly

behaving contingencies. The clustering approach is further extended to group representative

contingencies under multiple operating conditions and scenarios. Since the focus of this work

is short-term voltage problems, in particular fault-induced delayed voltage recovery (FIDVR),

voltage response patterns at different buses is used to define the similarity between contin-

gencies. For comparison of voltage waveforms and its quantification, Kullback Liebler (KL)

measure, a novel entropy-based metric is formulated to characterize voltage recoveries. First,

the clustering-based approach to identify severe contingencies for a given operating condition

is presented. Then the framework is extended to select the representative contingencies from

a wide range of operating conditions and scenarios. Simulations have been performed on the

modified IEEE 162 bus system to demonstrate and validate the clustering procedure based on

FIDVR characterization.

3.2 Motivation and Proposal

Contingency analysis is an important tool used to assess the security of the system under

topological changes and component failures. It has been an integral part of power system
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planning and operations [35],[36]. The power system undergoes variations in terms of loads,

generation and system configurations. Among large number of possible system load variations

and contingencies, only a limited number is chosen for analysis using time domain simulations

mainly due to intense computational effort. In the planning studies, analyzing all possible con-

tingencies is a computationally challenging problem because of large number of possible system

variations. Contingencies must be carefully chosen to cover a wide range of possibilities, while

ensuring system security. For reducing the number of contingencies if the most severe contin-

gencies are considered, then there is a possibility of relatively less severe contingencies creating

problems in different regions of the system. In order to select a comprehensive list of contin-

gencies that affects different regions of the system, a clustering based approach is proposed in

this work. The motivation behind the clustering based contingency analysis is the nature of

the FIDVR problem. While the disturbance leading to FIDVR problems may be initiated by

different kinds of contingencies, the underlining problem is an inherent weakness in the power

system (lack of dynamic VAR support). If the contingencies that exposes same weakness in

the system, over certain operating conditions and scenarios, are grouped together then instead

of considering all contingencies only severe contingencies in each group acts a representative

for all other contingencies in their respective groups. If contingencies can be grouped together

based on their similarity in behavioral patterns, then the number of contingencies that has

to be considered for analysis can be significantly reduced. A two level clustering process is

developed to reduce the number of scenarios, operating conditions and contingencies to be ana-

lyzed in the power system planning process. Level 1 clustering groups contingencies at a given

operating condition based on their similarity in voltage responses at different buses and level

2 clustering identifies the representative contingencies under various operating conditions and

scenarios based on the similarity between level 1 clusters. In order to compare the responses of

different contingencies, a quantitative measure that characterize the voltage response is needed.

There are two important factors in the voltage recovery process: (1) rate of recovery (how

fast the waveform converges) and (2) level of recovery (the voltage level it converges). The

WECC voltage performance criteria is a point-wise condition on the voltage waveform. It can

only be inferred whether or not the waveform satisfies the WECC criterion. It cannot be used
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to compare quantitatively the recovery nature of several waveforms. The slope or integral-

based methods have limitations to quantify the voltage recovery as an index for comparison.

Currently there are no quantitative measures, which can take both rate of recovery and steady

state settling value of voltage time series into account, while characterizing the voltage for

FIDVR phenomenon. Therefore, to encompass both the rate and the level of recovery, the

KL divergence, an entropy-based measure of the distance between distributions is derived. KL

measure collapses the temporal and magnitude information in voltage time series into a scalar

quantity, which forms the basis for comparing different voltage recoveries.

3.3 Characterization of FIDVR

In this work, the entropy, a popular measure of complexity and uncertainty in the signal

processing and information theory [37], and time-series analysis [38], is used to characterize

the voltage response. The notion of entropy used in this work is from a signal processing

perspective as opposed to system perspective. This notion of entropy is not same as the one

used in statistical mechanics or dynamical systems literature, where the entropy is defined with

respect to probability distribution left invariant under the system dynamics [39, 40].

A method for constructing a probability density function from given voltage time-series data

over a finite time interval is used in this work. The entropy is computed for this probability

density function, which is then used to characterize the recovery rate of the voltage waveform.

The basic idea is the following. If the voltage recovers very quickly to its steady state value,

then the corresponding probability density has a high peak near the steady state value, due to

the high concentration of the voltage samples at this value. This makes the behavior of the

voltage waveform less uncertain. As a result, the entropy of the density function corresponding

to fast recovery is low. The opposite holds true when the voltage recovers slowly. Therefore,

the entropy for the density function corresponding to slower recovery is high. This observation

makes it possible to use entropy as a quantitative measure of the rate of recovery.
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3.3.1 Computation of density function from time-series data

It is important to emphasize the criteria as specified by the WECC voltage performance

criterion, involve both temporal and magnitude information of the voltage time-series data.

WECC voltage performance criteria involve information where it is required for the voltage

magnitude to have reached certain values within a particular time interval. These two (temporal

and magnitude) pieces of information can be combined with the help of density function.

Mathematically speaking, the density function, p : X → R, is any nonnegative scalar value

function with a finite integral. Furthermore, the density function is said to be a probability

density, if the integral of the function over X is equal to one, i.e.,

p(x) ≥ 0, and

∫
X
p(x)dx = 1. (3.1)

Next, the procedure for the construction of the approximation density function, p, from the

voltage time-series data is discussed. Consider voltage time-series data where a fault occurs at

t = T0 and is cleared at t = Tcl. The bus voltage, vmin < v(t) < vmax, is observed from the

time instant, t = Tcl to t = Tf . vmin is the voltage level at the time instant when the fault is

cleared and vmax is the nominal value before the fault (e.g., 1 pu). The interval (vmin, vmax) is

divided into N intervals, such that

[vmin, vmax) =
N⋃
i=1

[vi, vi+1) =
⋃
i

Di. (3.2)

The time spent by the trajectory in the interval [vi, vi+1) is denoted as ∆ti and defined as,

∆ti :=

∫ Tf

Tcl

χ[vi,vi+1) (v(t)) dt, (3.3)

where χA(x) is the characteristic function of set A,

χA(x) =

 1 for x ∈ A

0 otherwise.
(3.4)

pi :=
∆ti
T

=
1

T

∫ Tf

Tcl

χ[vi,vi+1) (v(t)) dt. (3.5)
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It can be verified the sum of pi over index i adds to one, i.e.,

N∑
i=1

pi =
1

T

∫ Tf

Tcl

N∑
i=1

χ[vi,vi+1) (v(t)) dt =
1

T

∫ Tf

Tcl

1dt = 1.

The pi for i = 1, . . . , N can now be used to approximate the probability density function,

p(x), from Eq. (3.1).

In particular,

p̃ := (p1, . . . , pN ), (3.6)

is an approximation to p(x), where the approximation essentially involves discretization of

the space X into intervals Di (3.2). Furthermore, in the limit as N → ∞, the p̃ will converge

to p in a weak sense.

3.3.2 Relationship between entropy and rate of recovery

This section discusses the relationship between entropy and the rate of recovery of the

voltage waveform.

Definition 1 (Entropy) The entropy corresponding to a probability distribution function p(x)

is defined as follows:

H(p, T ) := −
∫
X
p(x) ln p(x)dx. (3.7)

The entropy corresponding to the approximation, p̃, is defined as

H(p̃, T ) := −
N∑
i=1

pi ln pi. (3.8)

Remark 1 It is to be noted that pi ln pi is taken as 0 for pi = 0, using limit argument.

Entropy is a measure of uncertainty where larger entropy values imply more uncertainty and

vice versa. For example, the entropy corresponding to uniform probability distribution will be

maximum and one corresponding to a Dirac delta distribution (where the probability mass is

concentrated at a single point and, hence, certain) will be 0, the minimum. For a given voltage

waveform, if the voltage magnitude recovers fast, then, it converges to the nominal value quickly.

The probability density function computed using the procedure outlined in Section 3.3.1 will



www.manaraa.com

53

be concentrated closer to the nominal value and, hence, will correspond to a smaller value of

entropy. On the other hand, if the voltage magnitude recovers slowing to its nominal value,

then, the density function corresponding to such a recovery will be more dispersed and, hence,

will lead to a larger value of entropy. So, the entropy can be used as a measure of voltage

recovery, where larger values of entropy correspond to a slower recovery and vice versa.

Although entropy serves as a good measure for the rate of recovery, it is insensitive to the

final steady-state value of bus voltage. In particular, if the two voltage waveforms recover at

the same rate, but converge to two different steady state values then the entropy values will

be the same for both cases. However, given the fact these waveforms converge to two different

steady-state values, it is desirable that the metric used to characterize the voltage response has

the ability to differentiate such cases.

3.3.3 Kullback-Leibler divergence for joint characterization of rate and level of

recovery

KL divergence, also known as relative entropy, is a popular measure of distance used in

statistics and information theory. It is used to capture the difference between information

contained in two different probability density functions and is defined as follows:

Definition 2 The Kullback-Liebler divergence or relative entropy between two probability den-

sity functions, p(x) and q(x), is denoted by D(p ‖ q) and is given by the following formula

D(p ‖ q) =

∫
X
p(x) ln

p(x)

q(x)
dx. (3.9)

KL divergence is always non-negative and, zero if and only if, p = q. However, it is not a

true distance between two density functions, because it is not symmetric and does not satisfy

triangular inequality. However, it is convenient to think of KL divergence as a distance between

two density functions.

The KL divergence will be used for the purpose of characterizing the rate as well as the

level of recovery of the voltage signal. Towards this goal, first a probability density function,

pref (x), corresponding to reference voltage recovery is defined. The reference density function
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will correspond to a voltage waveform, which will recover instantaneously to a nominal voltage

value, say vnom, following a fault. Hence, pref , will be a Dirac-delta function with all its mass

concentrated at x = vnom = 1 p.u. However, strictly speaking, the Dirac-delta function does not

qualify the definition of probability density function and, hence, the following approximation

for the ideal probability density function is used.

pref (x) = Ẑ−1e−Λ(x−vnom)2
, Ẑ =

∫
X
e−Λ(x−vnom)2

dx, (3.10)

where, Ẑ is the normalization constant, introduce to ensure that
∫
X pideal(x)dx = 1. The

positive parameter, Λ > 0, controls the concentration of the density near x = vmax. For a large

value of λ, more mass is concentrated near x = vnom. Now let p(x) be the probability density

function corresponding to a particular voltage waveform with a given recovery. The objective

is to compare the ”distance” between p(x) and pref (x) using KL divergence i.e., D(p ‖ pref )

to determine the recovery. The KL divergence will capture not only the rate but also the level

of recovery. The finite dimensional approximation of the KL divergence formula is given in

3.9. Let p̃ and p̃ref be the finite dimensional approximations of the density, p(x), and pref (x),

respectively and of the form

p̃ = (p1, . . . , pN ), p̃ref = (pref1 , . . . , prefN ). (3.11)

where, p̃ is constructed using the procedure outlined in Section 3.3.1, and,

pref,i :=
e−λ(yi−vnom)2

Z
, i = 1, 2...N

Z =
N∑
i=1

e−λ(yi−vnom)2

(3.12)

yi refers to the ith partition of the voltage axis and it corresponds to the voltage level vi. The

parameter λ controls the width of the reference probability distribution, which is concentrated

around the nominal voltage level, vnom. The normalizing factor Z, makes the summation of

the reference distribution equals 1. The finite dimensional approximation of KL divergence is

defined as follows.
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Definition 3 The KL divergence between p̃ and p̃ideal is denoted by K and defined as follows :

K(p||pref) =

N∑
i=1

pi ln
pi
pref,i

(3.13)

The KL divergence could be further simplified to,

K = lnZ +

N∑
i=1

pi ln pi + λ

N∑
i=1

pi(yi − vnom)2 (3.14)

Now, inspecting (3.14), it can be observed if the recovery is poor, the KL divergence would

be higher. If the voltage signal does not recover fast, pi will be higher for smaller i. The

weighting factor (yi − vnom)2 would be more for smaller i in comparison to larger ones. This

would ensure the KL divergence would be more, if the pi is more for lower voltage levels.

3.3.3.1 Example : Characterization of Voltage waveform using KL measure

The major steps involved in calculating the KL divergence for a sample voltage waveform

shown in fig.3.1 (a) are summarized below.
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Figure 3.1: (a) Voltage time series (b) Probability density function for the voltage series in
part (a) and ideal voltage recovery

Step 1) The voltage axis is partitioned into N subintervals. The voltage samples are observed

from fault clearing instant (t = 1.1s) to the final observation time (t = 5s). The number of

voltage samples in each subinterval is counted. This number provides information about the

time the voltage waveform is present in a subinterval.

Step 2) The number of samples in a particular subinterval is divided by the total number of

samples to obtain the normalized subinterval frequency. This generates the probability density
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function of the given voltage waveform. The blue colored bars in Fig. 3.1(b) is the probability

density function corresponding to the voltage waveform in 3.1 (a).

Step 3) Construct the probability density function for the reference voltage recovery using

(3.12). The Pref in Fig.3.1(b) corresponds to the reference distribution.

Step 4) Calculate the KL divergence measure using (3.13). For the example shown in fig.3.1,

the KL value is calculated to be 16.7, which indicates a delayed recovery of voltage.

3.3.4 Critical value of KL divergence

For a general specification of voltage performance as given in (3.15), the KL measure that

corresponds to a voltage waveform that traces the voltage envelope is called critical KL value.

v(t) ≥ V1, Tcl ≤ t < T1,

v(t) ≥ V2, T1 ≤ t < T2, V2 > V1,

v(t) ≥ V3, T2 ≤ t ≤ Tf , V3 > V2.

(3.15)

where, ∆T1 := T1 − Tcl, ∆T2 := T2 − T1, ∆T3 := Tf − T2 and ∆Tf := Tf − Tcl. Tcl denotes the

fault clearing time and Tf denotes the final time period.

If the voltage time series satisfies the performance conditions mentioned in (3.15), then, the

corresponding KL divergence satisfies the following upper bound,

K∗ :=
1

∆Tf
(∆T1 log ∆T1 + ∆T2 log ∆T2 + ∆T3 log ∆T3)

+
λ

∆Tf
(∆T1(V1 − V ∗)2 + ∆T2(V2 − V ∗)2

+ ∆T3(V3 − V ∗)2) + logZ − log ∆Tf

(3.16)

For the voltage bounds specified by the Western Electricity Coordinating council (WECC)

voltage performance criteria, the value of KL measure is calculated to be 4.9 considering the

parameters λ = 450 and N = 50. A value of KL measure above this critical value signifies vio-

lations in the performance criteria. Higher the value of KL measure, more severe the violation

of WECC performance criteria at the corresponding bus. When the value of KL measure is

below 4.9, it signifies that the voltage signal recovers fast and also settles within the bounds

specified by WECC performance criteria.



www.manaraa.com

57

V1
V2

V3
Vnorm

Time

Vo
lta

ge
 L

ev
el

 (p
.u

)

Fast Recovery (KL=0.4)
Recovery to low voltage level (KL=34)
Critical KL Envelope

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7
0.5

0.6

0.7

0.8

0.9

1

1.1

Probability Density

Vo
lta

ge
 L

ev
el

 (p
.u

)

 

 

Fast Recovery
Recovery to low voltage level
Critical KL Envelope

Figure 3.2: (a) Critical voltage performance envelope (b) PDF of voltage responses

A pictorial representation of the voltage performance constraints is shown as dotted lines

in fig.3.2.a. Figure 3.2.a also provides a slow and fast recovering voltage waveforms. The

PDF corresponding to the voltage responses in Figure 3.2.a are provided in Figure 3.2.b. For

the fast recovering voltage waveform the corresponding KL value is 0.4 and for a delayed

recovery voltage waveform the KL value is 34, which implies a significant violation in the

voltage performance criteria.

In order to validate the characterization of FIDVR by KL measure, the percentage of

induction motors in the IEEE 162 bus system is increased from 0 - 45%. As the percentage of

induction motor load is increased, the delayed voltage recovery is more pronounced as shown

in fig.3.3. Figure 3.4 shows the KL measure for the different percentage of induction motor

loads in the IEEE 162 bus system. Higher KL values corresponds to delayed voltage recovery

waveforms. The red line in fig.3.4 corresponds to a critical KL value, which is derived based on

the WECC performance criteria. If the value of KL is greater than this critical value, then it

implies voltage performance violations. On the other hand if the value is less than the critical

KL, then there are no violations or in case if there are violations the violations are very small

and not severe.

3.4 Clustering of Contingencies

In this section, a framework to classify contingencies into different clusters, according to

their behavioral patterns for a given operating condition, in particular, with respect to voltage
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recovery patterns is presented. The most severe contingency from each cluster becomes the

representative of other contingencies in the corresponding cluster. The input set of contingen-

cies, NC , can be selected based on the operators knowledge about the system, past experiences,

most probable contingencies, contingencies of severe type etc. The input set of contingencies

are grouped into different clusters for a given operating condition using spectral clustering al-

gorithm. Given a power system with NB buses and a set of NC possible N-1 contingencies, the

goal is to identify sets of contingencies such that contingencies in the same set would produce

similar patterns of response in the system. By utilizing the bus KL numbers, corresponding

to different contingencies, the relationship between contingencies is identified using Spearman

rank (SR) correlation. The SR correlation values are used to construct the contingency sim-

ilarity matrix and is provided as an input to the K-means clustering algorithm, which is the

clustering engine of spectral clustering algorithm.

3.4.1 Similarity of contingencies

Using the time domain simulation results, KL divergence at each bus is computed for all

contingencies and the results are stored in a matrix K̄ ∈ RNB×NC . The element Kij of the K̄

matrix has the summarized information of the voltage time series corresponding to the ith bus

and jth contingency in a scalar form. Let Ui and Vj denote the ith row and jth column of K̄.
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Ui ∈ RNC contains the KL divergence for the ith bus for all contingencies and Vj contains the

KL divergence for all buses for the jth contingency.

Numerous measures, such as Euclidean distance, cosine similarity, Pearson and Spearman

rank correlation (SC), are available to describe the similarity between two vectors. Euclidean

distance yields inconsistent results when the KL vectors corresponding to two contingencies are

related by scalar transformations or constant offset. This will provide greater distance between

these two contingencies and place them in two different clusters when they are supposed to be in

one cluster. Cosine similarity measures the angle between two vectors and is unaffected by scalar

transformations of the data. However cosine similarity suffers when there is constant offset

between two vectors. Pearson correlation (PC) measures the strength of linear relationship two

KL vectors Vj1 and Vj2 using the formula as shown in (3.17). PC between contingencies j1 and

j2 is denoted as ρuj1j2 and is defined using (3.17),

ρvj1j2 :=

∑NB
k=1 (Vj1(k)− v̄j1) (Vj2(k)− v̄j2)

σvj1σvj2
, j1 6= j2

where,

v̄j1 :=
1

NB

NB∑
k=1

Vj1(k), σvj1 :=
1

NB

NB∑
k=1

(Vj1(k)− v̄j1)2 ,

v̄j2 :=
1

NB

NB∑
k=1

Vj2(k), σvj2 :=
1

NC

NC∑
k=1

(Vj2(k)− v̄j2)2 .

(3.17)

v̄j1 and v̄j2 denotes the mean value of KL vectors corresponding to contingencies j1 and j2

respectively. σvj1 and σvj2 represents the standard deviation of KL vectors corresponding to

contingencies j1 and j2 respectively.

Pearson correlation overcomes the problem of scalar transformations and constant offset but

it suffers when there is no linear relationship exists between the two vectors. Spearman rank

correlation is a measure of monotone relationship between two vectors. When the KL vectors

corresponding to two contingencies are monotonically related Spearman rank correlation will

yield a perfect correlation of 1, even if their relationship is not linear. In contrast, Pearson

correlation will not yield a perfect correlation when the relationship is not linear. For defining

the similarity between the two contingencies it has been found that the SC yields better results
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compared to other measures because it measures the monotone relationship between the KL

vectors corresponding to different contingencies.

For computing the SC value, first the KL measure of the two contingencies provided in Vj1

and Vj2 are converted to rank vectors, Rj1 and Rj2 , respectively. The bus corresponding to the

lowest KL value is assigned the least rank (rank 1) and the bus corresponding to highest KL

value is assigned the highest rank (rank N). When there are identical KL values in a contingency

vector, then a rank equal to the average of their positions in the ascending order of values is

assigned to the buses corresponding to rank ties. The rank vectors are used to compute the

Spearman correlation using (3.18).

rs :=

∑NB
k=1 (Rj1(k)− r̄j1) (Rj2(k)− r̄j2)√∑NB

k=1 (Rj1(k)− r̄j1)2∑NB
k=1 (Rj2(k)− r̄j2)2

,

wherer̄j1 :=
1

NB

NB∑
k=1

Rj1(k), r̄j2 :=
1

NB

NB∑
k=1

Rj2(k),

(3.18)

rj1 and rj2 denotes the mean values of rank vectors corresponding to contingencies j1 and j2,

respectively.

The Spearman rank correlation, rs, works on the ranks of two vectors, instead of the actual

data provided in the vectors. It takes values between +1 and -1. When rs takes the value of

1, it indicates a perfect association of ranks between the two contingencies and a value of -1

indicates a perfect negative association of ranks (highest ranked bus in contingency 1 becoming

lowest rank in contingency 2 and vice versa). A value of rs close to zero signifies a weak

association between ranks of the two contingencies.

Figure 3.5 shows the scatter plot of KL values for positively correlated contingencies. The

Spearman rank correlation value of 0.9986 indicates that contingencies 2 and 64 affect the

same set of buses in a similar rank order. A scatter plot of KL values for negatively correlated

contingencies is shown in figure 3.6. The buses that are severely affected by contingency 46 are

not affected when contingency 55 happens. Similarly, those buses that are severely affected by

contingency 55 are not affected when contingency 46 occurs. This negative correlation between

contingencies 55 and 46 is captured by the Spearman rank correlation value of -0.376.
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Figure 3.6: Negative correlation between
contingencies

3.4.2 Spectral clustering algorithm

A spectral clustering technique [41] is utilized to group the contingencies into different

clusters based on the similarity information. The Spearman rank correlation is used to define

the similarity between contingencies. The following steps describe the algorithmic procedure

involved in grouping contingencies using spectral clustering technique.

Step 1) Pre-processing: This step chooses the set of contingencies and buses that must

be considered for further analysis. When the affected region is very small compared to the

total number of buses, the computed correlation will lead to misleading similarity information

between the two contingencies. Therefore, neglecting non-severe contingencies and buses will

improve the accuracy of the results. The threshold values to determine severe contingencies

and buses from non-severe cases are system and user dependent. The threshold values for the

selection of contingencies and buses are provided as an input to the cluster analysis.

Step 2) Similarity matrix (S): The similarity matrix defines the distance between each

contingency with respect to all other contingencies. First, compute the SC between two contin-

gencies, j1 and j2, using (3.18). Then, the SC values are converted into the distance measure

by using the transformation dj1j2 = 1− rj1j2s . The value of dj1j2 provides the distance measure

between the two contingencies, j1 and j2. If the two contingencies affect similar buses in the

same rank order, then the corresponding correlation value will be close to 1 and the distance

between them is close to zero. If the SC value is -1, then the distance will have a value of 2,
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indicating dissimilarity between the two contingencies. Since the SC value lies in the range of

-1 and 1, the distance measure will lie in the range of 0 to 2.

Step 3) Adjacency matrix (A): Calculate the adjacency matrix (A) using a Gaussian sim-

ilarity function as shown in (3.19a). The parameter, kp, scales the similarity function value

and σ is the connectivity parameter, which defines the extent of similarity between two contin-

gencies. The degree matrix, D, is a diagonal matrix with entries s1, .., sj , .., sRC , as defined in

(3.19b), along its diagonal.

Aj1j2 = kpe
−
dj1j2
σ , Aj2j1 = Aj1j2 , j1 6= j2, and (3.19a)

sj =

NRC∑
k, k 6=j

A(j, k), A ∈ RNRC×NRC . (3.19b)

NRC denotes the reduced number of contingencies that have been obtained after the pre-

processing step.

Step 4) Calculate the graph Laplacian matrices using (3.20). Matrix L and Lnorm represent

the unnormalized and normalized graph Laplacian matrix, respectively. Lnorm is a positive

semi-definite matrix and have NRC non-negative real valued eigenvalues, 0 = λ1 ≤ · · · ≤ λNRC .

L = D −A.

Lnorm = D−
1
2LD

1
2 .

(3.20)

Step 5) Identify the preliminary number of clusters using eigenvalue analysis on the Lapla-

cian matrix. If the eigenvalue, 0, has a multiplicity of k, this implies there are k fully dis-

connected clusters. However, this is an ideal scenario and does not happen in power systems.

There are a number of methods available in the literature for choosing the initial number of

clusters, k, for the clustering algorithm. Of the available methods, the eigengap heuristic is

used to identify the initial number of clusters, where the goal is to identify the number, k, such

that all eigenvalues, λ1, · · · , λk, are small, but λk+1 is relatively large.

Step 6) Compute the first k eigenvectors, e1, · · · , ek, of normalized graph Laplacian matrix,

Lnorm.

Step 7) Form the matrix E ∈ RNRC×k using the first k eigenvectors, e1, · · · , ek, as columns.

Let yj ∈ Rk, j = 1, · · · , NRC be the vector corresponding to the j-th row of E. yj denotes
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the jth contingency from the reduced contingency list in the lower dimensional space. The

key aspect of the spectral clustering algorithm is to change the representation from abstract

data points Vj in higher dimensional space to yj in lower dimensional space. The change of

representation enhances the cluster properties in the data so the clusters can be identified easily

in the new representation, using K-means clustering.

Step 8) Cluster the points, yj , using K-means algorithm into different clusters, C1, · · · , Ck.

The K-means algorithm partitions the data points, yj , in the matrix, E, into k clusters. The

K-means algorithm identifies the clusters, such that it minimizes the sum of the distance for

each data point in the cluster to the centroid of the corresponding cluster.

Step 9) For each identified cluster, recompute the Laplacian matrix with contingencies

belonging to the corresponding cluster. Checking further clustering is possible by investigating

the dominant eigenvalues of the new Laplacian matrix. If further clustering is possible, repeat

the clustering algorithm from Step 5. If further clustering is not possible, stop the clustering

algorithm and provide the final results.

A result of contingency clustering is contingencies that produce similar behavioral patterns

in system voltage response are grouped together in different clusters, for the given operating

condition. The most severe contingency in each cluster will act as a representative for all other

contingencies in the corresponding cluster. Only these representative contingencies, which

represent all other contingencies, are considered for further analysis. Also, the cluster analysis

provides the most severely affected buses corresponding to each cluster.

3.5 Application of Clustering Methods for Multiple Operating Conditions

The power system undergoes continuous variation in loads, generation and system configu-

ration. This presents a large number of scenarios that have to be taken care of during planning

stage. The scenarios (operating conditions, load levels, contingencies) have to be chosen care-

fully such that it covers a wider group of possible cases. The clustering procedure described in

section 3.4.2 can be extended to reduce the number of scenarios to be analyzed.
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Figure 3.7 provides the framework for grouping contingencies into different clusters under

multiple scenarios and operating conditions.

(I) In the first level clustering, the contingencies are grouped into different clusters for each

of the chosen ′m′ different conditions using spectral clustering algorithm. For each of the

chosen operating condition, a clustering is obtained. A clustering is a partition of input

contingency set into different clusters at a given operating condition.

(II) Level 2 clustering identifies the representative contingencies under various operating

conditions and scenarios based on the similarity between level 1 clusters. A hierarchical

clustering procedure is utilized to explore the similarity between level 1 clusterings and

place them into different cluster groups.

(III) The result of this two level clustering procedure is a master set of contingency clus-

ters. This master set contains similar cluster groups obtained from multiple operating

conditions and scenarios.

(IV) The representative contingencies from each of the clusters in the master contingency

cluster set are further utilized in the identification of dynamic voltage control area (Refer:

4).

3.5.1 Similarity measure

The first step in the level 2 clustering is to identify the relationship between level 1 clus-

terings. Numerous measures such as Rand index, adjusted rand index (ARI), Mirkin distance,

Jaccard index, variation of information (VOI) are available to compare the similarity between

clusterings [42]. Based on the definition of similarity measure, the resulting clustering pattern

may be different. In order to explore the pattern of clustering under multiple operating con-

ditions and scenarios, two types of similarity measures (ARI and VOI) are used to create the

hierarchical tree structure. The idea of using two types of similarity measures for identifying

the patterns is to find the natural divisions of clusters, rather than artificially imposing a group

in the given data set. Consider an example of partitioning the input set of Nc contingencies
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Figure 3.7: Contingency clustering framework for multiple operating conditions

into clusterings, Ci and Cj , corresponding to operating conditions i and j respectively. Let

Ci = k1, k2, ...kKi and Cj = k1, k2, ...kKj have Ki and Kj number of clusters respectively.

3.5.1.1 Adjusted Rand index

The ARI compares clusterings by counting the pairs of contingencies on which two cluster-

ings agree or disagree. Fig. 3.8 shows two clusterings, C1 and C2, where each clustering has

two groups of contingency clusters, k1 and k2. Since there is no overlap between contingency

clusters within a clustering, any pair of contingencies from the input contingency set will fall

into one of the four categories (a,b,c,d) described below.

(a) : Number of contingencies that are placed in same cluster in clustering C1 and C2 (e.g

contingencies c1&c3).

(b) : Number of contingencies that are placed in same cluster in clustering C1 but not in C2

(e.g contingencies c9&c11).

(c) : Number of contingencies that are placed in same cluster in clustering C2 but not in C1

(e.g contingencies c4&c10).
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(d) : Number of contingencies that are placed in different cluster in clustering C1 and C2 (e.g

contingencies c13&c2).

Figure 3.8: Comparing clusterings using adjusted Rand index

ARI(C1, C2) =

(
n
2

)
(a+ d)− [(a+ b)(a+ c) + (c+ d)(b+ d)](
n
2

)2 − [(a+ b)(a+ c) + (c+ d)(b+ d)]
(3.21)

The items (a, d) and (b, c) are interpreted as agreements and disagreements respectively, be-

tween the two clusterings. Equation (3.21) is used to compute ARI and the computed value

lies between -1 and 1. The higher the value of ARI, the more similar are the corresponding

clusterings. When the two clusterings match perfectly, then the value of ARI is 1. Since the hi-

erarchical clustering requires a similarity measure, where similar clustering have small distance

between them, the ARI is transformed to a new distance metric using (3.22). The distance

metric, dARI , will have a value of 0 when the clusterings match and the value increases as the

dissimilarity between clusterings increase.

dARI(C1, C2) = 1−ARI(C1, C2) (3.22)
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3.5.1.2 Variation of information

The VOI metric compares the clusterings based on the information provided by one cluster

about the another, utilizing information theoretic concepts. Equation (3.23) is used to calculate

the VOI metric, where H(Ci) represents the entropy associated with clustering Ci and I(Ci, Cj)

represents the mutual information between the clusterings Ci and Cj

V OI(Ci, Cj) = H(Ci) +H(Cj)− 2I(Ci, Cj) (3.23)

The notion of entropy used is based on Shannon’s definition [37] and it measures the in-

formation contained in a set as opposed to the use of entropy as a measure of disorder in

thermodynamics and statistical mechanics. Suppose for clustering, Ci, if there are nki con-

tingencies in cluster ki, then using (3.24a) the probability of a contingency from the input

set being placed in cluster ki is calculated. Equation (3.24b) is used to compute the entropy

associated with a clustering.

P (ki) =
nki
Nc

(3.24a)

H(Ci) = −
Ki∑
ki=1

P (ki)logP (ki) (3.24b)

If a contingency belongs to cluster ki in clustering Ci and to cluster kj in clustering Cj ,

then the joint distribution of the random variables associated with the two clusterings is given

by P (ki, kj). The value of P (ki, kj) is computed using (3.25a), where |ki ∩ kj | represents the

number of contingencies that are common to both clusters ki and kj . The mutual information

calculated using (3.25b) provides the information that clustering Ci has about clustering Cj .

P (ki, kj) =
|ki ∩ kj |
Nc

(3.25a)

I(Ci, Cj) =

Ki∑
ki=1

Kj∑
kj=1

P (ki, kj)log
P (ki, kj)

P (ki)P (kj)
(3.25b)

The mutual information between two clusterings is always non-negative and symmetric. When

two clusterings are exactly the same, then the mutual information between the clusterings is

same as the uncertainty in either of the clustering.
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I(Ci, Cj) = H(Ci) = H(Cj) (3.26)

The VOI metric measures the amount of information lost and gained in forming clustering

Cj from Ci. Consequently, lower values of VOI implies better similarity between the clusterings.

The VOI metric is always non-negative and lies in the range of 0 and logNc. The metric takes

a value of 0 when all the contingencies are placed in one cluster signifying no uncertainty

in identifying the clustering. The VOI is directly used as a distance metric in hierarchical

clustering without any transformations.

3.5.2 Hierarchical clustering

Hierarchical clustering is a process of identifying groups in the given data set using a

nested sequence of partitions [43]. The nested sequence of partitioning allows one to explore

the patterns in the given data set, rather than grouping them into pre-determined number of

clusters. In this work, agglomerative process of hierarchical clustering is utilized to analyze

the patterns among contingency clusterings obtained from different operating conditions and

scenarios. The patterns are visually represented using dendrogram, a tree-structured graphical

representation of hierarchical clusters.

The tree is a multilevel hierarchical structure that shows the link between the contingency

clusters obtained for each of the specified operating conditions and scenarios. Every node in

the tree correspond to a clustering object and the length of edge between nodes is a measure of

dissimilarity between clustering objects. The nodes at the bottom layer of the tree are called

terminal nodes and they correspond to clustering performed at different operating conditions

and scenarios. Internal nodes correspond to the clustering object obtained by linking similar

clusterings. The three main steps in the process of hierarchical clustering are provided below.

In the first step, the distance between every pair of terminal nodes is computed to form the

similarity matrix. If the number of terminal nodes (or cases) is N , then the distance between

N ∗ N−1
2 distinct pairs of nodes have to be calculated to form the N×N , symmetrical similarity

matrix. For the purpose of comparative studies, the similarity matrix is computed using Rand

index and VOI metric.
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In the second step, the clustering objects are grouped into a hierarchical cluster tree using a

linkage function. The linkage function determines the order of grouping different clustering ob-

jects using the distance information. Single linkage, complete linkage, average linkage, centroid

linkage, Ward’s method are some of the commonly used linkage functions linkref. In this work,

average linkage method is used to combine clustering objects because of its relative robustness.

This method takes the cluster structure into account and create clusters with approximately

equal variance. The average linkage method defines the distance between clustering objects,

d(C1, C2), as the average distance from all clustering objects in C1 to all clustering objects in

C2. Equation (3.27) is used to calculate the distance between clustering objects, where C1,i

denotes the ith clustering object in C1, n1 and n2 corresponds to the number of clusterings in

C1 and C2 respectively.

d(C1, C2) =
1

n1n2

n1∑
i=1

n2∑
j=1

d(C1,i, C2,j) (3.27)

In the third step, the hierarchical cluster tree is cut into different groups based on the

natural divisions in the input data set. The level at which the cluster tree is divided is based

on the inconsistency coefficient of the links. The inconsistency coefficient compares the height

of a link in a cluster tree with the average height of links below it. If the link join distinct

groups, then the value of inconsistency coefficient will be high. A value of low inconsistency

coefficient indicate the link that joined the clustering objects are similar. The clustering objects

at the bottom of the hierarchical tree have no further objects below them. Therefore, if a link

joins two clustering objects at the bottom level then it will have a zero inconsistency coefficient.

3.6 Simulation Results

Simulations have been performed in IEEE 162 bus system. The test system has 17 gen-

erators, 111 loads, 34 shunts, and 238 branches. The power flow and dynamics data for the

162 bus system are available in [34]. The total generation capacity and load of the system

are 20.60 GW and 17.27 GW respectively. For a more accurate load representation, 22 load
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buses were stepped down through distribution transformers to the 12.47 kV level, and the new

low voltage buses were assigned the numbers 163 through 184. Dynamic simulation studies

are performed using PSSE software [4]. To capture the dynamic behavior of motor loads, a

composite load model represented by CMDL was used at the new representative load buses.

Additionally, composite load models were also used to represent motor loads at the major load

centers (zones 3 and 6). Of the total load for each bus, 30% is specified as three-phase induction

motor loads and 35% as single-phase air conditioner loads.

3.6.1 Clustering contingencies - single operating conditions

The modified IEEE 162 bus system hasNB buses (184) and a total ofNC contingencies (316)

of the type, a three-phase fault at a bus cleared after 6 cycles by opening one of the transmission

lines connected to the faulted bus is considered for simulation studies. The voltage time series

corresponding to bus i and contingency j are stored in the vector, vij(t), 0 ≤ t ≤ Tf , i ∈

NB, j ∈ NC . Tf represents the final simulation time instant chosen as 5 seconds for all the

simulations.

3.6.1.1 Pre-processing

Using the time domain simulation results (vij), KL divergence at each bus is computed

for all contingencies and the results are stored in a matrix K̄ ∈ RNB×NC . Figure 3.9 shows

the pictorial representation of the K̄ matrix, where each row has KL measures corresponding

to a particular bus for all the contingencies. Each column has KL measures for all buses

corresponding to a particular contingency. The element, Kij , corresponds to the KL divergence

measure for the ith bus and the jth contingency. The recovery information from the voltage

time-series has been captured in a scalar form using the KL divergence measure.

The average value of the KL divergence for individual buses for all contingencies could be

used to determine the relative severity of an individual bus. Equation (3.28) is used to compute

the average KL divergence value for all buses, where ~1 ∈ RNC is a row vector for all entries

equal to 1. The ith entry of the vector, RB, contains the average value of the KL divergence

for the ith bus, when averaged over all contingencies.
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Figure 3.9: Representation of the K̄ matrix, where each row has KL numbers of a particular
bus for all contingencies and each column has KL numbers of all buses corresponding to a
particular contingency

RB :=
1

NC

~1 ∗ K̄, RB ∈ RNC ,~1 ∈ RNC (3.28)

Figure 3.10 (a) shows the RB vector plotted against the different buses. The red horizontal

line corresponds to the critical value of the KL divergence derived as 4.9 . The buses, whose

average KL values are greater than the critical KL value, can be termed as severe buses.

However, it is not sufficient to conclude the severity of buses only based on the average KL

values because of the masking effect. The number of contingencies that results in performance

violations at a particular bus is also important to decide the severity level of a particular bus.

Figure 3.10 (b) shows the number of performance violations for all the buses. For example,

from Fig.3.10 (a), it is determined bus 148 has the highest average KL value and bus 106

has a relatively less average KL value. However, from Fig.3.10 (b), it is observed that more

contingencies create a violation at bus 106 than at bus 148. This example shows that decisions

solely based on the average KL value or number of performance violations is insufficient to

arrive at critical buses.
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Figure 3.10: (a) Average value of KL divergence for different buses (b) Number of performance
violations for different buses

Table 3.1: Top 8 Severe Bus Ids (Sorted in descending severity)

sorted by 148 147 177 117 88 52 116 173

avg. KL

sorted by 177 106 52 88 147 115 116 117

violations

Table 3.1 shows the top 8 sorted severe bus numbers, based on average KL values (row 1)

and number of performance violations (row 2). Although, there are common elements between

the lists, the ranking of buses is different for both lists. There are multiple options to combine

these two data sets (severity and number of violations) to arrive at the list of critical buses.

When the average KL value is below critical and the number of violations is very small, then

such buses are termed as non-severe. They can be disregarded for further analysis. Buses with

a high average KL values and more performance violations (e.g., Bus 177) can be grouped as the

most critical buses. Such information is very valuable when selecting the locations to monitor

for voltage performance violations. Similarly, to decide the critical contingencies, both severity

of contingency and number of performance violations must be considered. The severity of a

contingency is defined as the average KL values for all buses corresponding to that contingency.

Equation (3.29) is used to calculate the average KL value for different contingencies. The jth

entry in the RC vector captures the severity level for the jth contingency. The severity of

different contingencies and the number of buses that violate the WECC performance criterion

are shown in Figs. 3.11 (a) and (b), respectively.
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RC :=
1

NB
K̄ ∗~1, RC ∈ RNC ,~1 ∈ RNB . (3.29)
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Figure 3.11: (a) Average value of KL divergence for different contingencies (b) Number of
performance violations for different contingencies

If the number of violations for a particular contingency is small, the recovery is tolerable

for that specific contingency, provided the severity level is small. Contingencies that have a

lower severity value and a small number of violations are termed as non-severe. A higher

severity value and fewer number of violations signifies these contingencies are severe for only

certain buses. Contingencies that have lower severity value and a larger number of violations,

affect a wider region of the network (e.g., C190 - Refer to Figs.3.11 (a) & (b)). The most

critical contingencies are those with a higher severity value and a large number of performance

violations (e.g., C35).

Table 3.2: Top 8 Severe Contingency Ids (Sorted in descending severity)

sorted by 35 2 190 34 131 289 256 167

avg. KL

sorted by 35 190 2 34 162 131 4 98

violations

Table 3.2 provides the indices for the top 8 sorted severe contingencies, based on the average

KL value for contingencies and number of performance violations. The actual contingencies

corresponding to the IDs shown in 3.2 are provided in Appendix A. The number of perfor-

mance violations and severity level can be used to identify critical contingencies. Non-severe

contingencies can be eliminated for further system level analysis.
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For further analysis, only those contingencies affecting more than 5% of the total number

of buses are considered. This reduces the number of contingencies from 316 to 71. Also, the

KL values for buses that do not have violations for more than 10 contingencies are discarded

for further analysis. After the pre-processing step, the K̄ ∈ R184×316 has been reduced to

K̄ ∈ R70×71.

3.6.1.2 Spectral clustering

The correlation matrix, as plotted in Fig 3.12, shows the correlation values between different

contingencies, where the rows and columns represent the contingency identification numbers

(cIDs) in the reduced contingency list. The different colors in the matrix plot corresponds

to SC values as indicated along the sidebar in fig 3.12. When the correlation value is close

to 1, the matrix block has shades of red signifying the strong similar behavior between the

cIDs given by the row and column number (e.g. cIDs 1 and 2). Similarity signifies both the

contingencies affect the same set of buses in the same rank order based on the KL values. When

the correlation value decreases below 0.6, then the contingencies exhibit weak correlations.

When the correlation value become negative, the matrix block has shades of blue, signifying

dissimilarity between these corresponding contingencies (e.g. cIDs 1 and 22). Dissimilarity

signifies buses severely affected by one contingency are not affected by another contingency.
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The SC values between contingencies are converted into distance between contingencies

using the transformation provided in Step 2 of section III.B. Strongly correlated contingencies

will have a distance close to 0 and weakly correlated contingencies will have a distance close to

2. Since the correlation between contingencies changes from strong to weak, the corresponding

distance between them increases from 0 to 2. The distance between contingencies is used to

compute the adjacency matrix utilizing a Gaussian similarity function. The computed adja-

cency matrix using (3.19a) will have values in the range of 0 to 1. A value of 1 in the adjacency

matrix implies contingencies belonging to corresponding row and column are adjacent and be-

long to the same group of contingency cluster. If the adjacency value between two contingencies

is close to 0, then it implies they are dissimilar and belong to a different contingency cluster.

The goal of the clustering algorithm is to group contingencies with adjacency values close to

1 with respect to each other. Such groupings will result in contingencies that create a similar

voltage response in the system placed in the same cluster.

Figure 3.13.(a) shows the eigenvalue plots for the analysis of 71 contingencies. From the

eigenvalue analysis of the normalized Laplacian matrix, the preliminary number of clusters is

2. The first two eigenvectors of the matrix Lnorm are used to represent the similarity data in

a reduced dimensional space. K-means clustering algorithm is performed using the number

of clusters and corresponding eigenvector data. The distance measure used by the K-means

algorithm is city block distance. Figure 3.13.(b) shows the plot of the second eigenvector after

rearranging the rows based on K-means cluster results. If the eigenvector 2 is thresholded at

-0.05, then the part below -0.05 corresponds to cluster 1 and the part above -0.05 corresponds

to cluster 2. Each data point in Fig. 3.13.(b) corresponds to a contingency ID.

When the correlation information between the contingencies is placed in random order as

shown in Fig. 3.12, the presence of clusters is difficult to discern. However, after clustering

analysis, the two clusters, shown by red colored regions along the diagonal of the adjacency

matrix, are clearly separated in Fig. 3.14. The shades of red imply contingencies have strong

similar behavior with respect to the other contingencies in the same cluster and shades of blue

imply their separation from contingencies in other clusters. There are 28 contingencies in cluster

1 and 43 contingencies in cluster 2, as indicated in Fig. 3.14. The contingencies are ordered
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Figure 3.13: (a) Plot of eigenvalues (b) Plot of eigenvectors

such that the most severe contingency in a cluster is placed first and the least severe contingency

is placed last. For example, cIDs 1 and 30 are the most severe contingencies in clusters 1 and

2, respectively. Similarly, cIDs 28 and 71 are the least severe contingencies in clusters 1 and

2, respectively. The first 23 contingencies in cluster 1 exhibit strong similar behavior with

respect to each other, where as cIDs 24-28 exhibit a strong similarity among themselves, but

relatively weak similarity with respect to the other contingencies in the cluster. This is due to

the fact these five contingencies are less severe and affect only a subset of buses affected by the

most severe contingency in cluster 1. It can be also noted these contingencies exhibit a strong

dissimilarity with contingencies in cluster 2. Similarly, a few contingencies in cluster 2 exhibit

a weak correlation with other contingencies in cluster 2, but they have a strong dissimilarity

with cluster 1 contingencies.

3.6.1.3 Validation of clustering results

Cluster validity refers to the procedure of evaluating the results of the clustering technique.

In this paper, validation is accomplished using internal criteria of validating clustering proce-

dure. With respect to the internal criteria, the two commonly used measures for validating

clustering results are compactness and separation. Compactness measures the closeness of con-

tingencies within a cluster and separation measures how distinct or well separated a cluster is

from other clusters. A silhouette coefficient combines the idea of both cohesion and separation
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Figure 3.14: Plot of Adjacency Matrix - After clustering. Rows and columns represent rear-
ranged indices of different contingencies.

for clusters and clusterings [44]. Silhouette values help interpret cluster results and provide a

graphical representation of how well each object lies within its cluster. The silhouette value for

the ith data point, s(i), is calculated by using the formula, s(i) = b(i)−a(i)
max{a(i),b(i)} . The average

dissimilarity of ith contingency with all other contingencies within the same cluster is denoted

by a(i). The average dissimilarity of the i with contingencies of other clusters where contin-

gency i is not a member is calculated and the lowest dissimilarity is denoted as b(i). The city

block distance measure, as used in k-means clustering, is used to define the dissimilarity. The

value of a(i) defines how well the contingency, i, is related to the cluster it belongs. When the

value of a(i) is smaller, the matching of contingency i to its assigned cluster is better. The

value of b(i) defines how well contingency i is separated from other clusters. The larger the

value of b(i), the poorer is the matching of contingency i to the other clusters. The value for

s(i) lies between -1 and 1. When the value of a(i) << b(i), then the value for s(i) will be close

to 1. A value of s(i) close to 1 signifies the corresponding contingency is properly clustered.

When the value of s(i) is close to 0, then the contingency is on the border line between two

clusters. When the value of s(i) is close to -1 signifies a misclassification of the contingency.

For illustration of clustering validation, sample plots of silhouette values for two different
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Figure 3.15: Silhouette plots for clustering with (a) k=2 (b) k=6

numbers of clusters (k=2 and 4) are shown in Figs. 3.15.(a) and 3.15.(b). The average silhouette

value for clustering with k as 2 and 4 are determined 0.8739 and 0.6409, respectively. The higher

the value of the average silhouette value, the better the clustering result. When the value of

k is specified as 4, some of the silhouette values become negative, indicating the contingencies

are improperly clustered.

The silhouette value can be used to provide the natural number of clusters within a data

set and compare the two different clusterings. The average silhouette value over the entire data

set provides a measure of how appropriately the contingencies have been clustered. An average

silhouette greater than 0.5 indicates reasonable partitioning of data into appropriate clusters

and a value less than 0.2 indicates the data do not exhibit cluster structure [44].

The number of clusters, k, an input to the k-means algorithm, is decided by the number

of dominant eigenvalues of the Laplacian matrix. The silhouette plot is used to confirm the

claim that the number of clusters identified using dominant eigenvalues, indeed, provide the

best clustering results. Figure 3.13 shows the eigenvalues plot for the Laplacian matrix used to

obtain the preliminary number of clusters as 2. To verify this claim, the clustering procedure

is repeated with different number of clusters and the average silhouette value is computed for

each case. Table 3.3 shows the average silhouette values for clusterings with different number

of clusters. The average silhouette value is maximum when the number of clusters is 2, which

indicates the natural number of clusters available in the provided data set is 2.
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Table 3.3: Average silhouette values for different clustering

No.of clusters 2 3 4 5 6 7

Average

silhouette value 0.8739 0.8627 0.6409 0.6039 0.6119 0.537

3.6.2 Multiple operating conditions

The idea of contingency clustering is extended to account for multiple operating conditions.

The total load of the system at the base case operating condition is 17.27 GW and the total

available generation capacity in the system is 20.724 GW. From the PV analysis, it is found

that a maximum of 11.76% of the base load can be increased uniformly at all load buses. For

illustration of clustering contingencies under multiple operating conditions, 15 different load

levels were considered. Case S1 corresponds to the base load level, cases S2 - S5 and cases S6 -

S9 corresponds to increase and decrease of 1%, 3%, 5%, 7% load from the base case respectively.

Since the base case is already in stressed condition, light loading conditions are considered to

provide variations in the operating conditions. Cases S10-S15 correspond to decrease in load

level of 15%, 17%, 19%, 21%, 23% and 25% from the base case load level.

For each of the considered operating conditions, 316 contingencies of the type, a three-

phase fault at a bus cleared after 6 cycles by opening one of the transmission lines connected

to the faulted bus are considered for analysis. After performing time domain simulation of

contingencies for all the considered cases, it was found that 236 (out of 316) contingencies does

not create short-term voltage problems. Therefore in the pre-processing 3540 out of 4740 cases

are discarded for further analysis. The remaining 80 severe contingencies are analyzed under

15 different operating conditions for their behavioral similarity.

Utilizing the KL measure and spectral clustering method, the contingency clusters for each

of the considered cases have been found. The base case scenario (S1) has resulted in two

clusters, where cluster 1 and 2 have 28 and 43 contingencies respectively. The remaining

nine of the 80 contingencies are non-severe and are not considered in the level 1 clustering

procedure for the base case condition. The most severe contingency from each cluster acts as

a representative of other contingencies in the corresponding cluster. Instead of considering all
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71 severe contingencies, only the two representative severe contingency can be considered for

further analysis and planning studies.

Each of the cases, S1 to S15 has resulted in two groups of contingency clusters. The two

groups of contingency clusters indicates that there are two weaker (VAR deficient) regions in

the system. Contingencies that exposes the same weakness in the system are placed in the

same cluster. As the load level increases, the number of contingencies in each cluster increases

and also the contingencies have become more severe. Case S5 (load level: 107%) has 80 severe

contingencies, where as case S15 (load level: 75%) has only 29 severe contingencies. It has

been observed that at light load levels (cases S10 - S15 ), the number of severe contingencies

are much less compared to that of base case.

The level 2 clustering procedure identifies and groups the level 1 clusters based on their

similarity. To explore the patterns between the 15 level 1 clusterings, a hierarchical clustering

strategy is used. The similarity matrix between clusterings to generate the hierarchical cluster

tree are obtained using ARI and VOI metric. The use of two types of metric is to verify

the consistency in the identified patterns rather than imposing a pattern obtained due to a

clustering method.

3.6.2.1 Hierarchical clustering using ARI metric

Table 3.4 shows the dissimilarity distance metric between clusterings obtained using ARI

for seven of the selected cases. For the selected cases, the percentage increase or decrease in

load level from base case is shown in parenthesis in table 3.4. The ARI value close to 1 indicates

a high degree of similarity between the clusters formed at operating conditions ( E.g. case S1

and S3). The ARI between the clusterings in case S1 and S3 is 0.9049, which is converted

into dissimilarity distance of 0.0951 using (3.22). On the other hand, the similarity between

clusterings at case S1 and S15 is low (ARI=0.0890) and is reflected as increased distance

between them (dARI=0.9110).

Figs. 3.16 correspond to the cluster tree obtained using average linkage method utilizing

the distance metric from ARI metric. The indices along the x-axis correspond to the number
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Table 3.4: Distance between clusterings at different operating conditions using ARI

Case S1 S3 S5 S7 S9 S10 S15

Load (%) (Base) (+3) (+5) (-3) (-5) (-15) (-25)

S1 0.0000 0.0951 0.1504 0.0812 0.1730 0.5413 0.9110

S3 0.0951 0.0000 0.0643 0.1713 0.2489 0.5474 0.8922

S5 0.1504 0.0643 0.0000 0.2229 0.2906 0.5431 0.8723

S7 0.0812 0.1713 0.2229 0.0000 0.1387 0.5461 0.9192

S9 0.1730 0.2489 0.2906 0.1387 0.0000 0.5160 0.9180

S10 0.5413 0.5474 0.5431 0.5461 0.5160 0.0000 0.6619

S15 0.9110 0.8922 0.8723 0.9192 0.9180 0.6619 0.0000

of clusterings in the given data set and they form the terminal nodes of the tree. The total

number of terminal nodes in a tree equals the chosen number of operating conditions for study.

The terminal nodes are linked based on the distance metric to form new clustering object

or an internal node. The links between nodes are shown using an upside-down U-shaped

lines. The internal node numbers are marked in circles in Fig. 3.16. For example, nodes

1 and 2 are linked to form node 16, which in turn is linked with node 6 with a height of

0.0334. In order to determine the natural cluster divisions, the height of each link in the

cluster tree is compared with the heights of neighboring links below it in the tree. If the link

has approximately same height with respect to the links below it, then there are no distinct

divisions between the clustering objects grouped at this level of the hierarchy. These links have

high level of consistency because the distance between the clustering objects that are being

joined is approximately the same as the distance between the clustering objects they contain.

If the link height differs from that of the links below it, then it is inconsistent with the links

below it. An inconsistent link indicates that the clustering objects joined by this link below to

different clustering groups. The inconsistent links identifies the natural divisions in a cluster

tree where the similarity between objects change abruptly. In Fig. 3.16, the height of last

link that joins two groups of clustering objects (blue and red) is 0.6804. The inconsistency

coefficient for this link is 1.0294 which indicates that it joined relatively distinct clustering

objects as opposed to the links below them.
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Figure 3.16: Hierarchical cluster tree using ARI and average linkage method

3.6.2.2 Hierarchical clustering using VOI metric

Table 3.5 shows the dissimilarity distance metric between clusterings obtained using VOI

for some of the selected cases. Theoretically, for the severe input contingency set, the VOI can

have a maximum of 2.3026 for two dissimilar clusterings if the number of possible clusters in

each clustering is limited to 10. The small VOI values in table 3.5 indicate that clusterings

at different operating conditions being similar. Comparing the distance metric in table 3.4

and 3.5, the distance values obtained using VOI are greater than that of ARI because of the

wide range of VOI metric. Both ARI and VOI metric are sensitive to the variations in the

contingency clusters performed at different operating conditions. These distance matrices are

used to construct the hierarchical cluster trees.

Table 3.5: Distance between clusterings at different operating conditions using VOI metric

Case S1 S3 S5 S7 S9 S10 S15

Load (%) (Base) (+3) (+5) (-3) (-5) (-15) (-25)

S1 0.0000 0.2052 0.2612 0.2181 0.3817 0.8652 1.3174

S3 0.2052 0.0000 0.1434 0.3649 0.4628 0.8468 1.2721

S5 0.2612 0.1434 0.0000 0.4091 0.4824 0.8137 1.2229

S7 0.2181 0.3649 0.4091 0.0000 0.3847 0.8943 1.3343

S9 0.3817 0.4628 0.4824 0.3847 0.0000 0.8727 1.3471

S10 0.8652 0.8468 0.8137 0.8943 0.8727 0.0000 1.0949

S15 1.3174 1.2721 1.2229 1.3343 1.3471 1.0949 0.0000

Except for few changes in the order of clusterings, both ARI and VOI identified the same

pattern in the clustering groups. In figs. 3.16 and 3.17, group 1 (blue) represents similar
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Figure 3.17: Hierarchical cluster tree using VOI metric and average linkage method

contingency clusters obtained at higher load levels, whereas group 2 (red) correspond to clusters

obtained at relatively lower load levels.

Fig.3.18 shows the summary of contingency selection process for planning studies using

clustering method. A total of 316 contingencies were analyzed under 15 different operating

conditions. The pre-processing of 4740 time domain simulation cases has termed 236 contin-

gencies as non-severe, since they did not create any short-term voltage problems. For each

of the considered 15 operating conditions, the remaining 80 contingencies were grouped into

clusters using spectral clustering method. For example, case S1 has classified the 71 severe

contingencies in 2 cluster groups. The resulting cluster groups for all the 15 cases are fur-

ther grouped into clusters using a hierarchical clustering procedure. The level 2 clustering has

grouped 9 cases (S1-S9) in one group and 6 cases (S10 - S15) in another group.

By selecting a representative case from each clustering group (collection of operating con-

ditions), the number of operating conditions needed for further analysis is reduced. For the

simulation cases, only two cases are required to equivalently represent the selected 15 dif-

ferent operating conditions. Also, by selecting representative contingencies from each of the

representative clustering group, the number of contingencies to be analyzed is reduced. For

this simulation study, only four contingencies are required to represent 80 severe contingencies

under 15 different operating conditions.



www.manaraa.com

84

Spectral Clustering

316

2

Output: 

Representative 

Contingencies

Input:  N-1  

Contingencies

S1

100%

S9 S8 S7 S6

S5 S4 S3 S2 S10 S11 S12

S13 S14 S15

99%97%95%93%

101%103%105%107% 85% 83% 81%

79% 77% 75%

Hierarchical Clustering

(ARI, VOI metric)

Final Set of Representative Contingencies: 4 ( 2 + 2 )

Scenario Number

Load Level

Select 

Multiple 

Operating 

Conditions

Representation of 

Level 1 

contingency 

clustering for 

scenario  S1 

Level 2 

clustering 

results

Total number of contingencies 

analyzed: 4740 (316*15)

Non-severe contingencies for all the 

considered scenarios: 236 out of 316

71Pre-Processing
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3.7 Conclusions

KL divergence, an entropy-based quantity, has been used to characterize both the rate and

level of voltage recovery. It provides a quantitative measure of voltage recovery phenomenon

and is very useful for comparing different voltage waveforms. A two level clustering framework

utilizing KL measure is developed to identify the representative contingencies under multiple

operating conditions and scenarios. The first level clustering uses spectral clustering method

to group the contingencies based on their similarity patterns of bus responses. The key aspect

of the spectral clustering algorithm is to change the representation from abstract data (voltage

time series) in higher dimensional space to a representation in lower dimensional space utilizing

eigenvectors. The change of representation enhances the cluster properties in the data so

that the clusters can be identified easily in the new representation, using K-means clustering.

K-means is a part of spectral clustering algorithm that identifies the contingency clusters.

Clustering contingencies based on their similarity reduces the number of contingencies to be

considered for further analysis, since the severe contingency for each cluster is representative

of all other contingencies in this cluster.

Hierarchical clustering method is used to explore and group clusterings corresponding to

multiple operating conditions. In order to show the identified patterns are not an imposition

of the clustering method, two different types of similarity measures are used to obtain similar

pattern of hierarchical structure. The clustering based contingency analysis will significantly

reduce the number of contingencies, scenarios and operating conditions that has to be consid-

ered for planning studies. Clustering also provide the set of affected buses by each contingency

cluster under different operating conditions and scenarios. The severely affected buses provide

indications about the regions that need dynamic VAR support due to their susceptibility to

short-term voltage problems. Also, this approach provides a comprehensive list of contingencies

that exposes different weaknesses in the system.
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CHAPTER 4. DYNAMIC VOLTAGE CONTROL AREAS

4.1 Introduction

The ability of the system to respond to events that lead to short-term voltage problems

depends upon the amount of dynamic reactive resources placed at critical locations. These

locations should be placed in the areas they most likely are needed. Existing reactive power

planning methods identify the locations and amount of VAR resources for a set of most proba-

ble contingencies or to eliminate low voltage problems in a region for a particular contingency.

The dynamic VAR locations identified based on the selected contingencies may not be able to

provide sufficient support, if one of the following conditions occurs (a) if the severity of the

planned contingencies increases, (b) if a more severe, unplanned contingency that expose reac-

tive deficiency in the same region that has been planned for, (c) if a new unplanned contingency

that expose reactive deficiency in a different region of the system. To overcome these short-

comings, instead of planning based on severe contingency screening method, a novel philosophy

based on the identification of system weakness is developed. A novel concept called dynamic

voltage areas was developed to address the importance of the location of dynamic reactive

reserves. This chapter details the motivation, formulation and identification of DVCA from

the supply-side solution perspective (i.e addition of dynamic reactive resource). Simulations

have been completed on the modified IEEE 162 bus system to illustrate the concept of DVCA.

Finally, the concept of DVCA was extended for demand-side solutions (load shedding) using

appropriate modifications in the formulation.
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4.2 Motivation and Proposal

Reference [45] describes a method to identify voltage control areas based on steady state

analysis. This method uses the PV curve tracing method to push the system to the point of

instability for all considered contingencies. For each considered case, modal analysis is per-

formed at the point of instability to identify the critical modes of instability. Based on the

participation factors (PFs) of buses corresponding to the critical mode, data mining techniques

are employed to identify contingency clusters and the voltage control area (VCA). The measure

used for contingency clustering is similarity in PFs. Generators that have high PFs are chosen

as the initial set of control candidates to represent each contingency cluster. The PFs corre-

sponding to zero eigenvalue (critical mode) indicate the buses contributing to the instability.

Heuristic rules have been applied to group contingencies that are related to the same VCA and

also to identify the specific buses and generators that form each VCAs.

As the short-term voltage problems, especially FIDVR, is mainly driven by the stalling

behavior of induction motors, it will be of interest to identify the areas that are vulnerable to

these problems. Also, it is important to identify the contingencies that are most likely to create

these short-term voltage problems. If the areas that are prone to short-term voltage problems

are identified, then by placing sufficient dynamic reactive support at strategic locations will

ensure safe and secure system operations under all circumstances. To accomplish the above

goal, a novel concept called dynamic voltage control areas is proposed. As opposed to the

voltage control areas defined in [45], the proposed DVCA defines the voltage control areas

from a dynamics perspective. DVCA identification separates the reactive deficient areas into

different groups and also provides the most effective control locations in each area.

A DVCA is defined as a section of a power system that responds as a cohesive unit to

avoid short-term voltage stability problems within that section. Figure 4.1 shows a conceptual

picture of the proposed DVCA concept. There are three DVCA in fig 4.1, where each DVCA

has a cluster of contingencies, affected buses and effective control locations for mitigating

the short term voltage problems in that area. The red line in each DVCA corresponds to

the representative contingency for the corresponding DVCA contingency clusters. The nodes
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represented in blue correspond to the affected buses and nodes with D-VAR (dynamic VAR

resources) are the most effective control locations. For example, given a voltage deviation within

a DVCA, the dynamic reactive resources within that DVCA respond together to prevent short-

term voltage stability problems in this area. As long as minimum levels of dynamic reactive

reserves are maintained in each area, then the likelihood of occurrence of short-term voltage

stability problems will be minimized.
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Figure 4.1: Illustration of dynamic voltage control areas - Red lines correspond to the rep-
resentative contingency, blue nodes represent the affected buses, D-VAR nodes are the most
effective control locations

For identifying DVCA, the KL measure is used to define the similarity between contingen-

cies. The KL measure indicates the relative participation of buses contributing to short-term

voltage problems.

4.3 DVCA from Supply-Side Solutions Perspective

Figure 4.2 provides the important steps involved in the process of identifying DVCA from

the supply-side solutions perspective. The DVCA control locations are the most effective buses
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Figure 4.2: Overview of steps involved in the identification of dynamic voltage control areas

for the addition of new dynamic VAR resources.

Step 1) Clustering of contingencies: Groups of contingencies behaving similarly are identi-

fied through the clustering procedure (Refer Section 3.4.2). The most severe contingency from

each cluster is a representative of all other contingencies in the corresponding cluster. Only

the representative contingencies are chosen for further analysis.

Step 2) Identification of affected buses: For each cluster, all buses with violations of per-

formance criteria form the set of violated buses corresponding to the cluster. Among the

violated buses, some buses are affected only by contingencies specific to a particular cluster

and some buses are affected by contingencies belonging to different clusters. The affected buses

are grouped into different sets, such as specific to each clusters and common between clusters
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through a hierarchical clustering procedure. The number of common affected buses between

clusters is used as the similarity measure for the hierarchical clustering procedure (Refer Section

3.5.2).

Step 3) Identification of preliminary DVCA: Each set of affected buses along with its corre-

sponding contingency clusters form the preliminary DVCA. The contingency clusters provide

the group of contingencies that result in the violations in the buses belonging to its DVCA.

For example, if the set of affected buses correspond to buses common to two clusters, then

contingencies corresponding to these two clusters have influence on this set of buses.

Step 4) Identification of potential control candidate locations: In the DVCA identification

procedure, one of the challenges is to identify the initial control candidate locations, which are

effective locations for placing dynamic reactive resources. Placement of dynamic VAR devices,

such as SVC and STATCOM, at lower kV levels is relatively cheap, but it will not help wider

range of buses in the system. On the other hand, placing them at higher kV levels helps a

wider range of buses to improve their voltage levels, but is very costly. Therefore, based on

economic considerations, the loads buses between the specified minimum and maximum kV

levels are chosen as preliminary candidate locations.

Step 5) Sensitivity studies: The influence of potential control candidate locations is identi-

fied through sensitivity studies. The trajectory sensitivity index (TSI) is used in [25] to identify

the relative effectiveness of locations for placing dynamic VAR sources. Similar to TSI, sensi-

tivities to the KL measure are used to capture the effectiveness of selected candidate locations.

For the representative contingencies, the change in KL measures at all monitored buses to

injection of dynamic VARs at the chosen candidate locations are calculated.

Step 6) Identification of effective control locations: The effective control locations are iden-

tified by a mixed integer linear programming (MILP) problem utilizing the KL sensitivities

from Step 5. The constraints of the MILP include the specified performance criterion on KL

values at all monitored buses and limitations on the maximum amount of reactive sources that

can be placed at each location. Details of the MILP problem are provided in section 4.4. The

MILP identifies the effective control locations and amount of dynamic VARs required to meet
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the specified KL performance criteria, considering the representative contingencies from cluster

analysis.

Step 7) Identification of DVCA: The effective control locations identified by the MILP

problem are mapped to its corresponding preliminary DVCA set. The mapping results in

effective control locations that influence a set of affected buses for a given set of contingencies.

After mapping, if a preliminary DVCA set does not have any control locations, then it is

merged with its corresponding common preliminary DVCA sets. The area of influence of

control candidate locations are identified from the sensitivity study results. For injection of

dynamic VARs at a control location, the buses that produced a change in the KL value above

a certain specified threshold value form the area of influence for the corresponding control

location. Each resulting group with a set of contingencies, affected buses, and effective control

locations forms a DVCA.

4.4 Mixed Integer Linear Programming

Sensitivity studies with different levels of dynamic reactive power injection are performed

to identify the influence of VAR injections on the KL measure at different buses. The results

of sensitivity studies are utilized to formulate the MILP optimization problem. The general

formulation of the MILP optimization problem for handling multiple contingencies is provided

in (4.1).

Objective function: The objective of this MILP formulation is to identify effective control

candidate locations (integer variables) and the minimum amount of dynamic reactive power

needed to meet the required short-term voltage performance constraints. The parameters, CiB,

CiQml , denote the fixed cost and variable cost respectively, based on the size of the dynamic VAR

device at location i. The status of the integer variable, Bi, determines the selection of location

i for dynamic VAR placement. The variable, Qiml, provides the amount of dynamic VAR device

required at location i for contingency m and level l. The constants, Ncont, Nlev, NLoc, define the

number of contingencies, the number of levels used for dynamic VAR injection in sensitivity

studies, and the number of initial candidate locations, respectively.
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minimize
B,Q

F =

NLoc∑
i

CiBB
i +

Ncont∑
m

Nlev∑
l

NLoc∑
i

CiQmlQ
i
ml,

Subject to

(C1) :

NLoc∑
j

∂Ki

∂Qjml
Qjml ≤ K

∗ −K(0)
m,i,

(C2) :

Nlev∑
l

Qiml ≤ BiQimax,

(C3) : QR,imlW
i
ml ≤ Qiml ≤ Q

R,i
mlW

i
m(l−1),

∀i ∈ SMon, ∀m ∈ SCont,

B ∈ {0, 1}, Q ∈ RNLoc , W ∈ {0, 1}

(4.1)

There are Nc continuous variables that is used to calculate the maximum amount of dy-

namic VAR support needed at the input candidate locations. The total number of integer

variables for NLoc initial candidate locations with Nlev levels of sensitivity analysis, for all

Ncont contingencies, is NLoc +Ncont ∗Nlev ∗NLoc. There are two sets of integer variables,

1. NLoc: Number of location variables to select a candidate bus for the placement of dynamic

VAR support.

2. Ncont ∗ Nlev ∗ NLoc: Number of indicator variables to derive a linear formulation of the

optimization problem

Constraints C1: The performance constraints include the KL divergence measure at the

monitored buses should be less than the critical value of the KL divergence measure for all the

contingencies. For contingency m, K
(0)
m,i is the base case KL measure at location i. K∗ denotes

the critical value of the KL divergence measure based on WECC performance criteria. ∂Ki

∂Qjml

provides the change in KL measure at bus i for a change in the maximum amount of dynamic

VAR support at location j. The sensitivity information is calculated around the dynamic VAR

support operating level, l, and for contingency, m. The calculation of sensitivity information

around multiple operating levels is to approximate the non-linear variations of KL measure to

changes in dynamic VAR support limits using piece-wise linear functions.
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Constraints C2: The constraints set C2 provide limits to the maximum amount of dynamic

VAR placed at a given location. The maximum capacity of the dynamic VAR device at selected

location, i, is given by Qimax. The selection of location i for dynamic VAR placement is decided

by the integer variable, Bi. If the ith location selection variable, Bi is zero, then the reactive

support from that location, Qiml, will be zero.

Constraints C3: The constraints set C3 is included to preserve the linearity of the opti-

mization formulation. The integer, W i
ml, is an indicator variable that indicates whether Qiml

has reached its corresponding range limit, QR,iml . If the indicator variables are not used, then

the MILP may select a reactive support variable Qml at higher levels, without reaching the

limits of its corresponding lower level variable Qml−1. Sets SMon and SCont define the sets of

monitored buses and contingencies, respectively.

4.4.1 MILP solution process

The process of finding solution to the MILP problem involves exploring a tree of linear

programming relaxations. Most of the existing MIP solvers employs the following procedure

to identify the optimal solution. The MIP solver selects a node from the tree and solves an

LP-relaxation problem at that node. Then it attempts to generate cutting planes to cut-off the

current solution and invokes a heuristic to try to find an integer feasible solution that is close

to the solution of the current LP relaxation problem. Based on the fractional values for integer

variables in the current solution, the solver selects a branching variable and places two nodes

that result from branching up or down on the branching variable into the tree. The MIP solver

processes active nodes in the tree until either no more active nodes are available or some limit

has been reached. Nodes are called active if they have not yet been processed. After a node

has been processed, it is no longer active. Table 4.1 provides a list of commercial and open

source MIP solvers along with their application program interfaces.

In this work, the branch and cut search procedure is used to solve the MIP optimization

problem. The branch-and-cut procedure manages a search tree consisting of nodes. Every node

represents an LP or QP sub-problem that is, to be solved, to be checked for integer constraints,
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Table 4.1: List of various MIP solvers along with their API interfaces

MIP Solver Type Interfaces

Cplex Commercial C, C++, Java,.NET, MATLAB, PYTHON, Excel

Gurobi Commercial C, C++, Java,.NET, MATLAB, PYTHON

LINDO Commercial C, MATLAB, Visual Basic

Mosek Commercial C, C++, Java, .NET, Python

XPRESS-MP Commercial C, C++, Java, .NET, VBA

KNITRO Commercial C, C++, MATLAB

BLIS Open C++

CBC Open C++

GLPK Open C

lp solve Open C

MINTO Open C

SCIP Open C

SYMPHONY Open C

and if needed, analyzed further. A branch is the creation of two new nodes from a parent node.

Typically, a branch occurs when the bounds on a single variable are modified, with the new

bounds remaining in effect for that new node and for any of its descendants. For example, if a

branch occurs on a binary variable, that is, one with a lower bound of 0 (zero) and an upper

bound of 1 (one), then the result will be two new nodes, one node with a modified upper bound

of 0, and the other node with a modified lower bound of 1. The two new nodes will thus have

completely distinct solution domains.

A cut is a constraint added to the existing MIP problem. The addition of cut will limit

the size of the solution domain for the continuous LP or QP problems at every nodes, without

eliminating legal integer solutions. This will reduce the number of branches that have to be

processed in the MIP solution process.

Each node, after its relaxation is solved, has an optimal objective function value, ZNode,i.

At any given point in the algorithm, there node whose ZNode,j value is less (in minimization

problems) than all the others is chosen as the ”‘best node”’. This best node value is compared

to the objective function value of the incumbent solution.

The resulting MIP Gap, expressed as a percentage of the incumbent solution, serves as a

measure of progress toward finding and proving optimality. When active nodes no longer exist,
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then these two values will have converged toward each other, and the MIP Gap will thus be

zero, signifying that optimality of the incumbent has been proven.

4.5 Simulation Results

Simulations have been performed in the modified IEEE 162 bus system. The modified test

system has 184 buses, 17 generators, 111 loads, 34 shunts, and 238 branches. For a more accu-

rate load representation, 22 load buses were stepped down through distribution transformers

to the 12.47 kV level, and the new low voltage buses were assigned the numbers 163 through

184. To capture the dynamic behavior of motor loads, a composite load model represented by

CMDL was used at the new representative load buses. Additionally, composite load models

were also used to represent motor loads at the major load centers (zones 3 and 6). Of the total

load for each bus, 30% is specified as three-phase induction motor loads and 35% as single-phase

air conditioner loads.

4.5.1 Formation of preliminary DVCA

Results from the contingency clustering analysis (Chapter 3) provide information about the

set of contingencies and buses affected by them under various operating conditions. Without

loss of generality, the identification of DVCA has been demonstrated using contingencies corre-

sponding to base case operating condition. There are two contingency clusters in the base case

operating condition, where cluster 1 has 28 contingencies and cluster 2 has 43 contingencies.

Cluster 1 and cluster 2 contingencies results in KL violations at 43 and 40 buses respectively.

Table 4.2 shows the top 10 severely affected buses along with the severity of violations for each

of the contingency clusters. The number of violations of a bus (# violations) indicates the total

number of contingencies that result in KL performance violations at the corresponding bus.

For example, all the 28 contingencies in cluster create KL performance violations at bus 171

and the sum of all KL violations is 1022.01. Similarly, 39 out of 43 contingencies have resulted

in KL performance violations at bus 147.
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Table 4.2: Top 10 affected buses corresponding to each contingency clusters. Affected buses
are sorted based on the number of contingencies they have violated

No Cluster 1 Cluster 2

Bus # violations Sum of Violations Bus # violations Sum of Violations

1 171 28 1022.01136 147 39 456.1774951

2 163 28 1019.14742 117 39 338.0832361

3 169 28 791.595515 52 39 228.4769517

4 164 28 728.482531 148 36 666.819915

5 166 28 628.468776 106 35 203.6779951

6 168 28 521.691306 116 34 241.3980171

7 165 28 490.637562 119 34 101.5432054

8 174 28 450.428301 177 32 1074.993844

9 167 28 417.555615 88 32 338.4928543

10 170 28 360.55767 115 32 160.0202477

Also, it has been observed that the buses with large KL violations for the representative

contingencies result in KL violations for other contingencies in the corresponding cluster. There

are 14 buses severely affected by contingencies in both clusters 1 and 2. There are 29 buses

severely affected only by cluster 1 contingencies and 26 buses severely affected only by cluster

2 contingencies. Three preliminary DVCA groups are formed by grouping the severely affected

buses along with their corresponding contingency clusters as shown in table 4.3.

Table 4.3: Formation of preliminary DVCA

DVCA1 DVCA2 DVCA3

No of severe contingencies 28 43 71

No of affected buses 29 26 14

Each preliminary DVCA contains information regarding contingency clusters and affected

buses. The preliminary DVCA 1 has 28 severe contingencies from cluster 1 and 29 buses affected

by these contingencies. Similarly, the preliminary DVCA 2 has 43 severe contingencies from

cluster 2 and 26 affected buses. The preliminary DVCA 3 corresponding to the 14 common

affected buses includes the contingencies from both clusters. The affected buses corresponding

to three preliminary DVCAs are shown in table 4.4.
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Table 4.4: Affected buses in the preliminary DVCAs

Preliminary # No of affected Affected

DVCA buses buses

48,50,51,110,112,133,135,136,137,138,

DVCA1 29 139,140,141,142,143,144,145,146,163,

164,165,166,167,168,169,170

34,36,49,56,57,67,68,69,71,77,78,

DVCA2 26 79,80,85,86,87,89,90,96,104,107,

122,123,176,181,184

4,52,74,88,106,111,115,

DVCA3 14 116,117,119,147,148,173,177

4.5.2 Identification of effective candidate locations

The effective candidate locations for the placement of dynamic VAR resources are identified

using a MILP optimization. The sensitivities of the KL measure with respect to VAR injection

at different candidate locations are used to formulate the constraints of the MILP problem as

described in section 4.4. For the selection of preliminary candidate location using sensitivity

studies, 92 load buses in the range of 69-345 kV levels are considered. For each selected potential

candidate location, a dynamic VAR source with maximum capacity as 1 p.u, 3 p.u and 5 p.u

is placed and the change in the KL measure for each injection level is observed. The different

VAR injection levels are considered to account for the non-linearity in change in KL measure

with respect to dynamic VAR injections. The sensitivity studies are performed only for the

representative contingency from each cluster. Contingency ID 2 and 34 acts as a representative

for cluster 1 and cluster 2 respectively. The details of different contingencies are provided in

appendix A.

The MILP problem is solved by using a branch and cut search algorithm in CPLEX. This

optimization problem identifies the best candidate locations and the amount of dynamic reac-

tive power needed to achieve satisfactory voltage performance, considering all representative

contingencies from each cluster.

The results of the MILP optimization are shown in table MILPresults. For the repre-

sentative contingency from each cluster, the MILP chooses 6 candidate locations as optimal

locations from the initial set of 92 candidate locations. The chosen control locations that pri-
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Table 4.5: MILP optimization results

Bus No Max Bsvc DVCA

117 1 2

133 3 1

135 3 1

144 2.45 1

147 1 2

148 1 3

marily influence the affected buses in preliminary DVCA 1, 2, and 3 are determined 3, 2, and

1, respectively. The control locations corresponding to each preliminary DVCA set along with

its influential buses and set of contingencies define the DVCA.

Total Buses: 184 No of contingencies: 316

Non-severe buses: 115 Non-severe contingencies: 245

DVCA: Dynamic Voltage Control Area

C: Contingencies, AB: Affected buses, CL: Control locations

DVCA 1

C:28

AB:29

CL:3

DVCA 3

C:71

AB:14

CL:1

DVCA 2

C:43

AB:26

CL:2

Violation Buses: 69

Figure 4.3: Summary of DVCA results

Figure 4.3 shows the summary of the three DVCAs for the modified 162 bus system. Each

DVCA has three components: (1) set of similarly behaving contingencies, (2) buses affected by

this contingency set, and (3) effective control buses that mitigate the problems in the affected

buses. DVCA 1 has 28 contingencies, 29 affected buses, and 3 effective control candidate loca-

tions. Similarly, 26 buses are severely affected by 43 contingencies in DVCA2 and 2 candidate

locations from the 18 affected buses are most effective in mitigating the short-term voltage

stability problems. The 14 buses in DVCA3 are affected by both contingencies in DVCA1 and

DVCA2, and, therefore, DVCA3 has 71 contingencies. The one control location in DVCA3 pro-

vides dynamic VAR support to the 16 buses in DVCA3 for all the 71 contingencies in DVCA3.

As long as the minimum levels of dynamic reactive reserves are maintained in each area, the

likelihood of short-term voltage instability is minimized within the corresponding area.
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To validate the claim that only representative contingencies are sufficient to perform the

MILP optimization, the optimization procedure is repeated with the top 3 contingencies from

each cluster set. The MILP optimization yielded the same control candidate locations obtained

in the case where only the representative contingencies are used. This approach greatly reduces

the number of dynamic simulations that must be performed, while dealing with multiple con-

tingency analyses during the planning stage.

4.6 DVCA from Demand-Side Solutions Perspective

Contingency Clustering

Most affected 

load buses

Representative 

contingencies

Sensitivity analysis of load 

shedding locations 

Mixed Integer Linear Programming

Effective load shedding locations & 

amount of load shedding

DVCA from 

demand side 

solutions perspective

Figure 4.4: Overview of steps to derive DVCA from demand side solutions perspective

Even after placing dynamic reactive resource at strategic locations, if sufficient reactive

reserves cannot be made available for a certain disturbance then the primary means to avoid

short-term voltage problems is to shed loads. The ideal loads to shed are heavily inductive
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loads. When heavily inductive loads are shed, both the system active and reactive power loads

are reduced.

For short-term voltage problems, the system operator may not have sufficient time to shed

the loads quickly to arrest the impending low voltage issues. Several utilities have installed

protective relays that can automatically trip loads to avoid voltage collapse. One such system

that automatically trips selected loads when voltage falls below a threshold level, for a specified

time, is called under-voltage load shedding scheme (UVLS). The essential components of DVCA

are contingency clusters which exposes the dynamic reactive power weakness in that area,

the buses that are affected by these contingencies and control locations that are effective in

mitigating the problem. When DVCA is defined from demand-side perspective, the chosen

control action is load shedding. The overview of steps involved in the process of identifying

DVCA from the demand-side solutions perspective is provided in fig.4.4. The controls in the

identified DVCA will provide the locations and the amount of loads to be shed.

The effective control locations (load shed locations) have to identified using sensitivity

studies through extensive off-line simulations. From the contingency clustering analysis, groups

of contingencies that produces similar response in the system and buses that are affected by

each contingency clusters are identified. The most severe contingency in each cluster is a

representative of all other contingencies present in that cluster. The weak buses corresponding

to each cluster are considered as candidate locations for load shedding. For every representative

contingency and for every selected candidate locations, induction motor loads are shed to find

the effectiveness of load shedding at the particular location. The effectiveness is calculated

using the performance improvement in system bus voltages, which is characterized by KL

measure. A MILP formulation similar to the one described in section 4.4 can be used to identify

the most effective load shedding locations and the amount of loads to be shed for improving

voltage performance. These control locations will provide more improvement in KL measure

especially at weak buses. Based on the influence of candidate locations and contingency cluster

information, buses and contingencies that form the DVCA are identified.
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4.7 Conclusions

DVCAs identify the different regions that are prone to short-term voltage problems. The

essential components of DVCA are contingency clusters which exposes the dynamic reactive

power weakness in that area, the buses that are affected by these contingencies and control

locations that are effective in mitigating the problem. The effective control locations are iden-

tified using a mixed integer linear programming problem, which utilizes the location sensitivity

information from extensive off-line simulations. The most important application of DVCA is

identifying the different dynamic VAR deficient regions in the system, along with the contingen-

cies that exposes these weak regions. The severely affected bus locations in each DVCA can be

used as locations for placing PMUs to monitor short-term voltage problems. The formulation

of DVCA is provided from both supply-side and demand side solution perspective. DVCAs

from supply-side perspective identifies the control locations as buses that are effective for plac-

ing dynamic VAR support devices, whereas the demand-side DVCAs have load shedding bus

locations that are effective in mitigating short-term voltage problems as its control locations.

Because of the DVCA identification, the control problem for load shedding can be designed in

a distributed fashion restricting the study area to each individual DVCA.
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CHAPTER 5. DYNAMIC OPTIMIZATION USING KL MEASURE

5.1 Introduction

In order to respond to unforeseen events, spare MVAR capability has to be held in reserve,

just as in the same manner that spare MW capability is held in reserve to respond to unforeseen

events. For mitigating short-term voltage problems, fast acting dynamic reactive resources are

needed. These dynamic VAR resources respond rapidly, in the order of within few cycles, to

system voltage deviations. For avoiding short term voltage problems, maintaining an adequate

level of dynamic reactive reserves is the key. The dynamic VAR requirements of the system

for normal and disturbance conditions must be carefully examined and should be placed at

strategic locations to provide support to the system. In chapter 2, the need for using dynamic

optimization methods for placing dynamic VAR resources was established. A control vector

parametrization (CVP) approach, a class of dynamic optimization methods, for placing dynamic

VAR resources was formulated and results were validated on IEEE 162 bus system and a large

utility system for a single contingency case. In this chapter, an improved formulation of CVP

method is developed to accommodate multiple contingencies while planning for dynamic VAR

resource allocation. The improvements in terms of formulation of the optimization problem,

solution procedure, and improving the efficiency of finding the optimal solution are presented in

detail in this chapter. Simulations have been performed on the modified IEEE 162 bus system

to illustrate the concept of the improved CVP approach. Finally, the results of the improved

CVP approach that are used to validate the philosophy of ”dynamic VAR planning based on

the weakness of the system” are presented.
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5.2 Motivation and Proposal

In chapter 2, a direct sequential dynamic optimization approach known as CVP was devel-

oped for identifying the optimal locations and amount of dynamic VAR resources to mitigate

short-term voltage problems. This CVP approach overcomes the curse of dimensionality posed

the direct simultaneous dynamic optimization methods. The scalability of CVP for large utility

scale power system models have been demonstrated in chapter 2. However, the demonstrations

were shown only for a single contingency case. While planning for the placement of costly dy-

namic VAR resources, it is very essential to consider a wide range of contingencies, scenarios,

and operating conditions. The direct extension of the CVP approach for multiple contingencies

and scenarios will again lead to the curse of dimensionality. On the one hand it is essential to

consider a wide range of system conditions and on the other hand it is important to limit the

size of the problem in order to find an optimal solution using dynamic optimization methods.

To limit the size of the optimization problem, the number of contingencies considered in

the optimization has to be reduced. Clustering methods described in chapter 3 identifies the

most important contingencies that acts as a representative of other contingencies under various

operating conditions. The consideration of only representative contingencies in the optimization

significantly reduces the problem size without compromising wide range of system conditions.

Another reason for the increase size of the dynamic optimization problem is the way the

constraints are formulated. The constraints of the CVP optimization problem in chapter 2,

checks the specified voltage limits at all the monitored buses for every time step. If the temporal

and the magnitude information of the voltage time series can be equivalently captured in a

scalar quantity, then the number of constraints of the CVP problem can be greatly reduced.

To accomplish this, KL measure, introduced in chapter 3, is utilized and a new formulation of

CVP is developed in this chapter.

In order to avoid the complexity of solving a mixed integer dynamic optimization problem,

the selection of effective control locations is done based on the concept of dynamic voltage con-

trol areas. The concept of DVCA ensures that the selected candidate locations are effective for

a cluster of contingencies under multiple operating conditions. The relative weights of selected
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candidate locations are obtained by utilizing KL measure and singular value decomposition.

The relative weights of the candidate locations are used in conjunction with the constraint

gradients to update the optimization variables at every solution iteration.

Thus, the improved CVP formulation utilizing KL measure, contingency clustering and

DVCA will identify the optimal locations and amount of dynamic VARs required to mitigate

short-term voltage problems. Because of the evaluation of dynamic VAR requirements in

the transient time frame, the identified dynamic VAR locations and amount will ensure safe

operation not only for the planned contingencies but also for the wide range of contingencies

and system operating conditions they represent.

5.3 Formulation of Dynamic Optimization for Multiple Contingencies

In this section, the improved formulation of CVP optimization for multiple contingencies is

presented. Equation (5.1) provides the multiple contingency dynamic optimization (MCDO)

formulation to identify the optimal amount of dynamic VAR resources.

minimize
BMAX

F (U) =

Ncont∑
m

NLoc∑
i

CiBmBMAXi
m,

Subject to

Power System Dynamics:

ẋ = f(x, y), g(x, y) = 0

WECC Voltage Performance Constraints

KLim(BMAXj
m, V

i(x, y)) ≤ KL∗(λ,N), ∀j ∈ SLoc

Limits:

BMAXi
min ≤ BMAXi

m ≤ BMAXi
max,

∀i ∈ SMon, ∀m ∈ SCont,

BMAX ∈ RNLoc , CiBm ∈ R

(5.1)
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5.3.1 Objective function

The objective of this CVP optimization is to minimize the amount of dynamic VAR require-

ments at the selected candidate locations. BMAXi
m refers to the maximum susceptance of the

dynamic VAR device at location i, for contingency, m. CiBm is the relative weight assigned to

location i for contingency m. Ncont corresponds to the total number of representative contin-

gencies and NLoc corresponds to the total number of selected candidate locations. The vec-

tor U = [BMAX1
1 , · · · , BMAXNLoc

1 , · · · , BMAXi
m, · · · , BMAX1

Ncont
, · · · , BMAXNLoc

Ncont
]T rep-

resents the collection of all optimization variables. The candidate locations are selected using

the concept of DVCA (Refer Chapter 4) and their relative weights are identified using singular

value decomposition (Refer section 5.5.1).

5.3.2 Constraints

(1) Power system dynamics : One of the major aspects of this MCDO problem is having

the power system dynamic behavior as constraints of the optimization problem. The power

system dynamic behavior is represented using a set of DAE equations, where f and g represent

the set of differential and algebraic equations respectively. These DAEs model the behavior

of generators, exciters, governors, induction motors, power system network etc and defines

the electromechanical state of the power system at any instant of time. The variables x and

y represents the state (e.g. generator rotor angle, speed, internal EMF etc) and algebraic

variables (e.g. bus voltages) of the power system dynamics model.

For studies involving short-term voltage problems, it is essential to include the dynamics

of induction motor loads in the set of DAEs. The induction motor dynamic model should

have a reasonable representation of the motor stalling phenomenon, motor current, real and

reactive power consumption in the stalled state, and also provide indication of the amount of

motor loads tripped by protection schemes. Without the proper representation of dynamic

behavior of induction motor loads, it is difficult to represent the actual behavior of the power

system for short-term voltage stability studies.(2) WECC voltage performance : The total
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amount of dynamic VAR compensation required is determined based on the power system time

domain response following the representative WECC/NERC B contingencies. The dynamic

VAR devices act to maintain the bus voltages so that it satisfies the WECC voltage performance

criteria. WECC transient voltage dip criterion states that for a Category B disturbance (single

element outage), should not cause a transient voltage dip that is greater than 20% for more

than 20 cycles at load buses, or exceed 25% at load buses or 30% at non-load buses at any

time other than during the fault. Also, the steady state voltage limit prescribes at steady state

voltage values should be between the bound of 95% to 105%. WECC voltage performance

criterion involve both temporal and magnitude information of the voltage time-series data.

WECC voltage performance criterion is a point-wise criterion and if this criterion has to be

evaluated at all the monitored buses, for all the considered contingencies, then it will increase

the number of constraints. To limit the number of constraints, KL measure are utilized to

transform the temporal and magnitude information of the voltage time series into an equivalent

scalar quantity. Now, the WECC voltage performance criterion is evaluated as a constraint in

KL measure at all the monitored buses. KLim is the KL measure at the monitored location i,

for contingency m and is a function of voltage time series V i(x, y), which is in turn function

of available dynamic VAR support BMAXj
m, ∀j ∈ SLoc. KL∗(λ,N) is the critical KL value,

above which the WECC voltage performance criterion will be violated. The larger the values

of KL are, the more severe the WECC voltage performance violations. The critical KL value

is a function of λ, the parameter that controls the width of the reference distribution and N ,

the number of partitions made in the voltage axis.

(3) Limits on the size of VAR device The final set of constraints provide the limits on

the size of the dynamic VAR device that has to be placed at each location. The limits on

the size of the VAR device depends upon the physical constraints such as space availability

and economics associated with installment. BMAXi
min and BMAXi

max are the minimum and

maximum possible limits of the maximum susceptance of the dynamic VAR device at location

i.
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5.4 Solution Methodology

The MCDO identifies the optimal amount of dynamic VAR compensation required at the

selected candidate locations to satisfy the WECC voltage performance constraints for all repre-

sentative contingencies. The MCDO problem is solved using the control vector parameterization

(CVP) approach (Refer Chapter 2 for details). The overview of steps involved in the MCDO

solution process is provided in fig.5.1. The MCDO solution process has three major divisions

(a) Preparation of NLP optimization (b) NLP Optimization routine (c) Interaction with power

system dynamics solver.

Representative contingencies 

from clustering analysis

Initialize SVC reactive 

power limits (Q0) & 

Location weights (W)

Start contingency, i=1

KL sensitivity 

calculations

SVDMILP

Update 

Q0i
Update Wi

If i > Ncont

Move to next 

contingency

Non-Linear Optimization 

(NLP) (Interior-point 

algorithm) 

Check for Optimality

Update SVC limits

Refined maximum SVC 

limits at selected locations

Power System Time 

Domain Analysis

Voltage time-series to KL 

conversion

Evaluate voltage 

performance constraints

Finite-

difference 

Gradient 

calculations

Loops for all contingencies

Contingency

Maximum SVC limits

Initial condition (Q0) & 

Objective function weights 

(W) for the NLP 

optimization
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No

No
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Figure 5.1: Overview of dynamic optimization for multiple contingencies

5.4.1 Prepartion of NLP optimization

In the CVP approach, the dynamic optimization problem is converted into a NLP prob-

lem by discretization of control variables. For the MCDO problem, the control variables are

BMAXi
m, ∀i = 1 : NLoc, the maximum susceptance of SVC at the selected candidate locations.

Since the control variables exhibit constant profile for the entire optimization time window, no

discretization of control variables are made at the intermediate time steps. This particular

selection of control variable reduces the complexity associated with the selection of approxima-
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tion functions for the discretized time-dependent control variables. The solution of the state

variables (x(t)) are obtained by the forward integration of the DAE system. The solution of

NLP problems using numerical methods are in essence, iterative in nature. These iterative

methods requires a reasonable good starting point for the NLP optimization algorithm so that

it can reach the optimal solution in finite number of iterations. Based on the local information

obtained from the current iteration, i, the NLP optimization algorithm calculates the next

iteration’s direction and step length. One of the information that is utilized to calculate the

updates on the optimization variables is the gradient of the objective function. By appropri-

ately weighing the candidate locations based on its relative importance, the NLP optimization

algorithm can utilize this gradient information to reach the optimal solution in an effective

manner. Singular value decomposition (SVD) is used to identify the relative weights of can-

didate locations. The details of SVD technique for identifying the candidate location weights

for different representative contingencies are provided in section 5.5.1. For starting the NLP

optimization problem with a good initial guess, the solution from MILP problem is utilized.

The MILP problem is also used to fix the candidate locations for dynamic VAR placement.

The details of MILP in the preparation of NLP optimization are discussed in section 5.5.2

5.4.2 Optimization routine

The solution procedure of the dynamic optimization has three components - (a) Non-linear

programming (NLP) solver, (b) power system DAE solver, and (c) sensitivity calculations

to provide gradients for updating optimization variables. Gradient based NLP solvers such as

active set algorithms, interior-point methods (IPM) are some of the preferred solvers for solving

the non-linear programming problem. IPMs approach the optimal solution from the interior

of the feasible region. IPM, also known as barrier methods, replaces the NLP problem by a

series of barrier sub-problems controlled by a barrier parameter. The sub-problems in every

iteration are solved using sequential quadratic programming (SQP) and trust regions. Detailed

description of IPM for NLP problems can be found in [46].

In CVP, the dynamics of the system is solved separately using forward integration methods

and the solution is utilized to evaluate the constraints of the NLP problem. This feature of
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CVP facilitates the use of commercial grade programs like PSSE, PSLF etc to solve the system

of DAEs that represent the dynamic behavior of power system. The advantages of separating

the system dynamics from the NLP problem are (a) overcomes the curse of dimensionality, if

the system dynamics have to be solved simultaneously with the NLP constraints, (b) the use

of commercial grade programs provide the advantage of having advanced component models

and solution algorithms. The CVP approach is flexible to adopt the advancements in dynamics

system modeling and DAE solution strategies.

The key information the NLP solver requires to update its decision variable for the next

iteration is the gradient of the objective function and the Jacobian matrix of the constraints.

The accuracy of these first-order derivative information makes the NLP solver more efficient

and robust. If the exact first order derivatives to calculate the gradients of objective function

and constraints are not possible to obtain, then approximation of these first order derivatives

can be made through finite difference methods.

Equation (5.2) provides the forward-finite difference approximation of the constraint Ci

variation to change in the variable uj at the kth iteration. Equation (5.3) provides the Jaco-

bian matrix of the constraints of the NLP problem, where ∇Ci(U) represents the variation of

constraint Ci with respect to the variation of all optimization variables (U). The computational

cost of the finite-difference method depends upon the number of optimization variables (Nu).

The system dynamics has to be solved Nu + 1 times and constraint functions are evaluated

for all the simulations. In every computation one of the optimization variables changes by a

pre-defined amount (∆u) from the current optimization iteration value and with the base case

computation where all optimization variables remains at the current iteration k values. At the

end of all simulations for gradient computations, (5.4) is used to calculate the gradients of all

constraints.

∇Ci(uj) =
Ci(u

k
j + ∆uj)− Ci(ukj )

∆u
(5.2)
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Jm(U) =



∇C1(U)T

...

∇Ci(U)T

...

∇CNc(U)T


, ∇Ci(U) =



∂Ci
∂u1

...

∂Ci
∂uj
...

∂Ci
∂uNu


, U =



u1

...

uj
...

uNu


(5.3)

∇ujJk =
Jk(u1, · · · , uj + ∆uj , · · · , uNu)− Jk(U)

∆uj
(5.4)

∇F = [
∂F

∂u1
, · · · , ∂F

∂uj
, · · · , ∂F

∂uNu
],
∂F

∂uj
= CjBm (5.5)

The NLP solver utilizes the gradient of the objective function and constraints Jacobian

matrix to compute the optimization variables update vector for the next iteration.

5.4.2.1 Convergence criteria

This subsections describes the convergence criteria and stopping tests used by NLP algo-

rithms to declare local optimal or infeasible solutions. In the theory of numerical optimization,

the convergence of an optimization method makes it a theoretically valid optimization routine.

Equation (5.6) provides the first order conditions for identifying a local optimal solution.

∇f(u) +

Nc∑
i=1

λci∇ci(x(u), y(u)) +

Nx∑
j=1

λbj = 0 (5.6a)

λci .(c
U
i − ci(x(u), y(u))) = 0, i = 1 · · ·Nc (5.6b)

λbj .min
[
(uj − bLj ), (bUj − uj)

]
= 0, j = 1 · · ·Nx (5.6c)

ci(x(u), y(u)) ≤ cUi , i = 1 · · ·Nc (5.6d)

uLj ≤ uj ≤ uUj , j = 1 · · ·Nx (5.6e)

λci ≥ 0, (5.6f)

λbj ≥ 0, if uUj is finite, (5.6g)

λbj ≤ 0, if uLj is finite, (5.6h)
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λci is the Lagrange multiplier corresponding to the constraint ci(x), and λbj is the Lagrange

multiplier corresponding to the bounds on variable uj . The Lagrange multiplier, λbj , can take

either positive or negative value depending upon whether the corresponding variable is upper

or lower bounded as indicated by (5.6g)-(5.6h).

The NLP optimization algorithm also stops if it encounters one of the following,

1. When the norm of the gradient becomes small, i.e
∥∥∇f(ui)

∥∥ ≤ ε
2. When the iteration step size becomes small, i.e

∥∥ui+1 − ui
∥∥ ≤ ε

3. When the relative change in the objective function becomes small, i.e f(ui)−f(ui+1)
f(ui)

≤ ε

5.4.3 Interaction with power system DAE solver

The relative weights of different candidate locations obtained from SVD are used as cost

coefficients (W ) in the objective function. With the initial amount of dynamic VAR compen-

sation from the MILP optimization, the power system time domain analysis is invoked to solve

the DAE of the system for all the representative contingencies. The voltage time series of all the

monitored buses obtained from the DAE solution is converted into KL measure. KL measure

provides a quantitative measure of rate of voltage recovery and also the voltage level to which

the time series converges in a scalar quantity. In the NLP problem, the voltage performance

constraints are formulated in terms of KL measure. Thus, the results from the power system

DAE solution is used to evaluate the NLP constraints at every optimization iteration. The

performance of KL measure of all the monitored buses is evaluated based on the critical KL

value corresponding to WECC voltage performance criteria. If the KL measure at a particular

bus is greater than the critical KL value, then the voltage recovery at the corresponding bus

violates the WECC performance criteria.

Also, the optimization routine interacts with the power system DAE solver to calculate

the sensitivity of KL constraints to the change in the maximum amount of dynamic VAR

device at the selected candidate locations. The finite difference block provides the necessary

contingency details, Bmax values for the VAR devices, and candidate locations as inputs to the

power system DAE solver. Utilizing the sensitivity information from all candidate locations,
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the finite difference block constructs the constraints Jacobian information, which is provided

to the optimization routine.

5.5 Improvements in Solution Efficiency

5.5.1 Singular value decomposition

Singular value decomposition is used to identify and order the dimensions along which the

inputs exhibit the most variations. Utilizing SVD, any rectangular matrix, A ∈ Cm×n, can be

decomposed into product of three matrices - output direction matrix (U), scaling matrix (Σ),

and input direction matrix (V ), as shown in (5.7). The output and input direction matrices, U

and V , are of the size (m×m) and (n× n) respectively. The scaling matrix (Σ) is a diagonal

matrix of the size (m×n) and it contains the singular values of matrix A as its diagonal entries.

The singular values in scaling matrix (Σ) indicate the variance of the linearly independent

components along each dimension.The columns of the matrix U contains the orthonormal

eigenvectors of AAT and the columns of the matrix V has the orthonormal eigenvectors of

(ATA).

A(m×n) = Um×mΣm×nV T (n×n) (5.7)

A(m×n)V (n×n) = Um×mΣm×n

Avi = σiui, ∀i = 1 : n

(5.8)

Utilizing the orthogonality of the input direction vectors in V matrix (5.7) can be transformed

into (5.8). By selecting the input direction vector, vi, corresponding to the maximum singular

value, σi, the maximum change can be observed in the output vector, ui. For enhancing the

solution efficiency of the MCDO optimization problem, SVD is used to identify the relative

weights of the candidate locations identified by the MILP optimization. For each of the se-

lected MILP candidate locations, the variation of KL measure at the monitored locations for

VAR injections at the selected location is calculated. The sensitivity information from all NL
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candidate locations is utilized to form the Jacobian matrix, Jm ((5.9)), where ’m’ represents a

particular contingency ID. The entry
∂KLmi
∂Qmj

corresponds to the change in the KL measure at

the monitored bus, i, for VAR injection at the candidate location, j.

Jm =



∂KLm1
∂Qm1

· · · ∂KLm1
∂Qmj

· · · ∂KLm1
∂QmNL

...
...

...

∂KLmi
∂Qm1

· · · ∂KLmi
∂Qmj

· · · ∂KLmi
∂QmNL

...
...

...

∂KLmp
∂Qm1

· · · ∂KLmp
∂Qmj

· · · ∂KLmp
∂QmNL


(5.9)

Similarly, the sensitivity matrices for the selected candidate locations are calculated for all

the representative contingencies chosen for the dynamic optimization study. Equation (5.10)

shows the structure of the Jacobian matrix considering all the representation contingencies of

the MCDO problem. By performing, SVD analysis on the Jacobian matrix, the relative weights

of candidate locations under different conditions can be identified.

Jfull =



J1 · · · · · · 0

...
. . .

...

0 · · · Jm · · · 0

...
. . .

...

0 · · · 0 · · · JNCont


(5.10)

5.5.2 MILP

The NLP part of the CVP optimization requires the initial set of candidate locations for

dynamic VAR placement as an input. The selection of input set of candidate locations affects

the efficiency of the CVP solution process. If this input set of locations is not chosen properly,

then it degrades the performance of NLP optimization. In general, as the size of the input

candidate locations set increases, the amount of time required to solve the NLP optimization

increases. If the input locations set contains non-effective candidate buses, then the NLP

optimization may converge to an infeasible solution. In this work, the effective control candidate
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locations are identified using the concept of dynamic voltage control areas (DVCA). The DVCA

employs a MILP optimization problem to identify the most effective control candidate locations

that are effective in mitigating short-term voltage problems. The MILP optimization provides

the following results, which are used as inputs to the dynamic optimization problem,

1. Initial set of effective candidate locations for the placement of dynamic VAR resources.

2. Initial amount of dynamic VAR compensation at the selected candidate locations, which

is used as a starting solution for the NLP optimization problem.

5.6 Simulation Results

Simulations have been performed in the modified IEEE 162 bus system. The modified test

system has 184 buses, 17 generators, 111 loads, 34 shunts, and 238 branches. For a more accu-

rate load representation, 22 load buses were stepped down through distribution transformers

to the 12.47 kV level, and the new low voltage buses were assigned the numbers 163 through

184. The system has a total of 15.387 GW real power demand and 1174 MW of reactive power

demand. To capture the dynamic behavior of motor loads, a composite load model represented

by CMDL was used at the new representative load buses. Additionally, composite load models

were also used to represent motor loads at the major load centers (zones 3 and 6). Of the total

load for each bus, 30% is specified as three-phase induction motor loads and 35% as single-phase

air conditioner loads. The loads in zone 1 and 12 are not represented with composite induction

motor loads.

For the base case operating condition, out of 316 N-1 contingencies considered for analysis,

71 are identified as severe contingencies by the initial screening process. These 71 contingencies

are classified into two cluster groups. The most severe contingency from each cluster group is

treated as a representative contingency for the corresponding cluster group. Contingencies 2

and 34 are selected as the representative contingencies for clusters 1 and 2 respectively. The

details of all the contingencies are provided in appendix A.

Base case simulation results: Figures 5.2 and 5.3 shows the voltage response of the 5 severely

affected buses for the representative contingencies of clusters 1 and 2 respectively. The KL
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values corresponding to the voltage responses of buses shown in figs. 5.2 and 5.3 are provided

in table 5.1. The higher the KL values, the greater the violation in voltage performance.
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Figure 5.2: Voltage responses of top 5 violating buses for the representative contingency of
cluster 1

Table 5.1: KL values of the top 5 violating buses for the representative contingencies

Cluster 1 Cluster 2

Bus KL values Bus KL values

171 95.92395 177 42.00372

169 91.3023 148 30.22546

174 73.38107 163 27.38258

163 71.13043 173 24.78475

164 69.73211 147 22.8866

MILP optimization results: The KL performance at all the monitored buses are observed

after employing the dynamic VAR compensation at the locations identified by the MILP opti-

mization. With the usage of dynamic VAR resources, the KL performance violations have been

reduced but not completely eliminated. For cluster 1 representative contingency, 11 buses had

KL violations and 14 buses exhibited KL violations for cluster 2 representative contingencies.

Table 5.2 shows the top 5 buses with KL violations after employing the dynamic VAR

compensation from the MILP optimization for cluster 1 representative contingency. It also

shows the KL values of the top 5 buses that exhibited maximum KL violations in the base case
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Figure 5.3: Voltage responses of top 5 violating buses for the representative contingency of
cluster 2

Table 5.2: KL values for the top 5 violating buses in base case and MILP case, after employing
MILP solution for cluster 1 representative contingency

Base Case Violation Buses MILP Top 5 violations

Bus No KL Values Bus No KL Values

171 0.752 148 17.32

169 0.745 147 10.84

174 1.146 117 9.39

163 0.644 116 8.482

164 0.587 52 8.338

condition. The voltage responses of the buses in table 5.2 are shown in figs. 5.4 and 5.5.

Similarly, table 5.3 shows the top 5 buses with KL violations after employing the dynamic

VAR compensation from the MILP optimization for cluster 2 representative contingency. It

also shows the KL values of the top 5 buses that exhibited maximum KL violations in the base

case condition. The voltage responses of the buses in table 5.3 are shown in figs. 5.6 and 5.7.

MCDO results: Utilizing the MILP solution as the NLP starting solution, the amount of

dynamic VAR compensation at the identified locations are further refined using dynamic opti-

mization. Three different cases are used to construct the relative weights of different locations

in the objective function. In case A, the relative weights are identified using the maximum SVD
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Figure 5.4: Voltage responses at top 5 base
case violation buses for the cluster 1 repre-
sentative contingency with LP solution
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Figure 5.5: Voltage responses of top 5 vio-
lating buses for the cluster 1 representative
contingency with LP solution

Table 5.3: KL values for the top 5 violating buses in base case and MILP case, after employing
MILP solution for cluster 2 representative contingency

Base Case Violation Buses MILP Top 5 violations

Bus No KL Values Bus No KL Values

177 3.949 148 14.068

148 14.068 78 9.3029

163 0.911 68 8.3807

173 1.389 69 7.8269

147 7.116 79 7.7294

direction. In case B, the inverse of relative weights used in case A are used to construct the

objective function cost coefficients. Case C assumes a uniform weights for all the considered

locations. The relative weights of selected candidate locations for the three different cases are

provided in table 5.4. The most sensitive location in case A ( e.g Bus 144 for cluster 1 ) is

made as the least sensitive location for case B.

The NLP part of the dynamic optimization for multiple contingencies was solved using

interior point algorithm in KNITRO solver. PSSE is used to perform time domain simulations

of the power system model. The finite difference gradients of constraints are computed in

MATLAB using PSSE simulation results. The maximum number of iterations for the NLP

solver is limited to 15, to reduce the unnecessary computations for infeasible cases. Table

5.5 provides the results of the dynamic optimization for the considered three different cases.
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Figure 5.6: Voltage responses at top 5 base
case violation buses for the cluster 2 repre-
sentative contingency with LP solution
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Figure 5.7: Voltage responses of top 5 vio-
lating buses for the cluster 2 representative
contingency with LP solution

Table 5.4: NLP inputs - Relative weights of selected candidate locations and starting solution

Case A Case B Case C Initial Max Bsvc

Bus No cluster 1 cluster 2 cluster 1 cluster 2 cluster 1 cluster 2 cluster 1 cluster 2

117 0.0592 0.5460 0.6649 0.1276 1 1 0 2

133 0.5111 0.2141 0.0771 0.3254 1 1 1.5 0

135 0.5140 0.1071 0.0766 0.6507 1 1 3 0

144 0.5173 0.1071 0.0761 0.6507 1 1 2.45 0

147 0.0540 0.5888 0.7298 0.1183 1 1 0 3

148 0.4479 0.5353 0.0879 0.1301 1 1 1 1

It also provides the dynamic VAR compensation output of the NLP optimization for each of

the representative contingencies. C1 and C2 correspond to the representative contingencies of

cluster 1 and 2 respectively. The columns Max Bsvc provide the final values of maximum SVC

limit at the selected candidate locations.

The following inferences can be made from the results shown in table 5.5.

• Case A and C converges to a local optimal solution, whereas Case B converges to an

infeasible solution. The selection of proper weights for the locations in the objective

function plays an important role in the convergence of the NLP optimization.

• Case C (uniform relative weights) took more number of iterations to converge to an

optimal solution, when compared to case A (SVD based relative weights). The selection
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Table 5.5: Multiple contingency dynamic optimization results

Case A Case B Case C

Bus No C1 C2 Max Bsvc C1 C2 Max Bsvc C1 C2 Max Bsvc

117 0 2.05 2.05 1.02 0.8 1.02 0.88 1.95 1.95

133 1.16 0 1.16 0 0.88 0.88 1.4 0.94 1.4

135 2.73 0 2.73 1.45 1.51 1.51 2.91 0.98 2.91

144 2.22 0 2.22 0.84 1.34 1.34 2.36 0.94 2.36

147 0 3.11 3.11 4.17 1.91 4.17 2.93 2.95 2.95

148 1.53 1.84 1.84 0.26 1.21 1.21 0.95 1.95 1.95

Total 13.11 10.13 13.52

Convergence Local Optimal Infeasible Local Optimal

No of iterations 3 15 7

CPU time (s) 900 8200 2300

of relative weights based on SVD direction increases the computational efficiency of the

dynamic optimization algorithm.

• The amount of dynamic VAR compensation obtained from dynamic optimization is more

when compared to that of the MILP optimization. The increased amount is to completely

eliminate the KL voltage performance violations at all buses.

• The MCDO simulations have been performed with a base value of 100 MVA. Therefore,

a total of 1311 MVAR dynamic VAR is required to maintain the KL voltage performance

constraints at all buses for the representative contingencies. This large amount of dynamic

VARs are required to prevent the stalling of induction motors, which form 65% of the

total load in the system.

MCDO solution computational time: All simulations have been performed in a 64-bit desk-

top PC with i5 processor operating at 3.40 GHz. For IEEE 162 MCDO optimization routine

with two representative contingencies, cases A, B and C took 900 seconds (3 iterations), 8200

seconds (15 iterations), and 2300 seconds (7 iterations) respectively. The majority of time is

spent in the finite-difference Jacobian calculations. As the size of the system increases, the

MCDO solution computational time will increase mainly because of the increased computa-

tional time in performing the time domain simulation of large systems. Though the MCDO

computational time will increase still it will be able to handle large systems with this improved



www.manaraa.com

120

formulation as opposed to the direct simultaneous methods which suffers from the curse of

dimensionality.

Figures 5.8 and 5.9 provide the voltage responses of all buses, with the use of dynamic VARs

from MCDO, for the representative contingencies from cluster 1 and 2 respectively. The KL

values of all the monitored buses are below 5, indicating no violations in the WECC voltage

performance criteria.
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Figure 5.8: Voltage responses of all buses for cluster 1 representative contingency using MCDO
results

5.6.1 Validation

The main reason for using selected representative contingencies in the dynamic optimization

is to limit the size of the optimization problem while effectively capturing the characteristic

features of other contingencies. Each representative contingency acts as a representative of other

contingencies in the corresponding cluster because they exhibit a similar behavior in creating
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Figure 5.9: Voltage responses of all buses for cluster 2 representative contingency using MCDO
results

short-term voltage problems. If the violations for the most severe contingency in every cluster

groups are mitigated then the violations created by other similarly behaving contingencies will

be taken care of, except for a few special cases. To validate the results of multiple contingency

dynamic optimization results, simulations have been performed with and without the use of

dynamic VAR support and the comparison results are shown in table A.1 (Appendix: 6.3.2).

This table presents the details of the contingencies, number of KL violations in the base case

condition ( no dynamic VAR support ), number of KL violations after installing dynamic VAR

solutions obtained from dynamic optimization, and the contingencies that are included in the

clusters.
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The following are the key inferences from the validation results:

• The dynamic VAR planning using representative contingency screening method was able

to mitigate 85% of bus KL violations. There were a total of 2309 KL voltage performance

violations in the base case simulation of 316 contingencies. With the use of dynamic VAR

resource obtained from MCDO, the number of violations have been reduced to 334. The

MCDO was performed with only 2 representative contingencies.

• Most of the KL violations after the use of MCDO solution are relatively small when

compared to the base case condition. The majority of these KL violations are created

by contingencies that are not included in the clusters. These contingencies have created

violations less than the threshold number of buses and hence they are not included for

further analysis in the pre-processing stage of the clustering analysis.

• Among the contingencies that are included in the clusters, there are 2000 violations in

the base case and 180 violations after the use of MCDO results. This suggests that the

representative contingencies were able to mitigate the violations of other contingencies

that have been included in their corresponding clusters.

• The maximum number of violations after employing MCDO solution is created by con-

tingency ID 35. This is a special contingency in cluster 2. In the base case condition,

the KL violation buses exhibited oscillatory voltage waveforms. Such highly non-linear

cases need special treatment because they cannot be considered in the MILP optimization

procedure. With the solution from the MCDO process, the number of violations have

been reduced from 113 to 28. If the dynamic optimization is repeated for contingency ID

35, starting from the MCDO solution, the remaining violations can be eliminated.

5.6.2 Use of load shedding

In this section, the results of the study that allows certain percentage of induction motors

load shedding while evaluating the dynamic VAR requirements of the system. The criteria for

shedding loads is derived based on the WECC voltage performance criteria. If the bus voltage
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stays below 0.7 p.u for more than 20 cycles then certain percentage of induction motors were

allowed to disconnect using an under-voltage protection scheme. Two different percentages of

load shedding were considered for comparison, where case A corresponds to 20% load shedding

and case B corresponds to 40% load sheding. Table 5.6 provides the optimal amount of VAR

requirements obtained from the dynamic optimization for 20% and 40% of induction motor

load sheds.

Table 5.6: Comparison of MCDO results with different levels of load shedding

Max allowable load shed 0 20% 40%

Bus No
Max Bsvc

Base Case A Case B

117 2.05 0.00 0.00

133 1.16 0.00 0.00

135 2.73 1.02 0.68

144 2.22 1.24 1.11

147 3.11 1.12 0.00

148 1.84 2.55 1.28

Total 13.11 5.93 3.06

Percentage reduction

in SVC amount 54.75 76.64

The following are the inferences from the results presented in table 5.6.2:

1. With 20% allowance of load shedding, the number of dynamic VAR locations is reduced

from 6 to 4 and with 40% load shedding allowance only 3 locations are needed to mitigate

all the KL performance violations.

2. In case A, the total amount of dynamic VAR resources is 5.93 p.u., which corresponds to

a 54.75% reduction when compared to the base case where no load shedding is allowed.

3. Similarly with case B, where high amount of load shedding allowance is made, the total

amount of dynamic VAR resource is reduced to 3.06 p.u from 13.11 p.u. in the base case.

This corresponds to a 76.64% reduction in the dynamic VAR requirements.

These study results shows that the use of demand-side controls like load shedding can

reduce the amount of investments made in installing new dynamic VAR devices. With the
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increasing trend in demand response programs, load control can be a part of solutions that are

used to mitigate short-term voltage problems. They offer economic benefits by deferring the

installments of costly dynamic VAR resources. The use of supply-side solutions like adding new

dynamic VAR devices are also necessary until the threat of short-term voltage problems are

reduced to a considerably lower level. Otherwise, the lack of sufficient dynamic VAR support

may lead to frequent short-term voltage problems like FIDVR, which in turn require the loads

to be shed frequently. Depending upon the severity of the problem and cost of installing new

devices, the MCDO formulation has to be extended to accommodate demand-side controls.

Such an integrated supply and demand side controls framework will provide the planners with

different choices to arrive at both economical and compliant solution for short-term voltage

problems.

5.7 Conclusions

In this chapter, an improved CVP formulation to identify the optimal amount of dynamic

VARs required to mitigate the short-term voltage problems under multiple contingencies is

provided. KL measure is utilized to significantly reduce the size of the dynamic optimization

problem. The concept of DVCA is utilized to identify the initial set of effective control candidate

locations. The efficiency of the dynamic optimization problem is improved by SVD and MILP

formulations. SVD provides the relative weights of candidate locations for multiple operating

conditions, which are used to compute the gradient of the objective function. The solution of

MILP provides the starting point for the NLP optimization routine, which makes it to converge

to the optimal solution in a faster way.
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CHAPTER 6. CONCLUSIONS

6.1 Conclusions

A comprehensive, dynamic optimization based VAR planning strategy to mitigate short-

term voltage problems was developed in this work. The developed approach evaluates the

reactive power needs dynamically using time domain simulations and accounts for a wide range

of contingencies, scenarios and operating conditions. Control vector parameterization, a dy-

namic optimization approach was used to identify the most effective bus locations and the

optimal amount of dynamic VAR compensation required to overcome the short-term voltage

problems.

Short-term voltage problems are exacerbated by single-phase low inertia induction motor

loads that represent residential A/C systems, since they tend to decelerate and stall when

their voltage magnitude drops below a certain level. Stalled motors have an adverse impact

on voltage stability because they consume very large amounts of reactive power within a very

short time during a large disturbance. Appropriate load models that can capture the dynamic

behavior of induction motor loads have to be used in the planning studies. The use of inaccurate

load models may not adequately identify potential short term voltage problems and give false

confidence about system’s ability to handle short term voltage problems. The system exposure

to short term voltage problems like delayed voltage recovery can be a symptom of a larger issue

- inadequate dynamic reactive support. Therefore, the use of dynamic VAR support devices is

necessary until the threat of induction motor stalling is significantly reduced.

Control vector parametrization, a dynamic optimization method is used to identify the

optimal amount of reactive power needed to mitigate short term voltage problems which oc-

curs in the system with high penetration of induction motor loads. With this approach, the
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dynamics of the system especially load dynamics are properly accounted for while performing

optimization. The CVP method based on direct sequential approach overcomes the curse of

dimensionality posed by direct simultaneous approach, by separating the solution of system

dynamics from the optimization routine. This feature of CVP enables to utilize commercial

software like PSSE to solve power system dynamics and utilize the results in the optimization

routine. The scalability of this CVP approach has been shown by testing this methodology on

a large scale realistic power system.

In order to cover a wide range of possibilities in the power system planning process, a two

level clustering procedure to reduce the number of scenarios, operating conditions and contin-

gencies was developed. To facilitate the clustering process, KL measure, a quantitative measure

that captures the rate of recovery of bus voltages and its level of recovery in a scalar quantity

was developed. The clustering procedure identifies the most important contingencies, scenarios

and operating conditions that act as representative of other cases that exposes dynamic VAR

deficiency in the system. Utilizing the clustering results, a novel concept called dynamic voltage

control areas was derived. DVCAs identify the different regions that are prone to short-term

voltage problems. Each DVCA has three essential components namely, the buses that are vul-

nerable to short-term voltage problems, the contingencies that exposes these problems and the

most effective control locations to mitigate these problems. A mixed integer linear program-

ming problem was formulated to identify the most effective bus locations for the placement of

dynamic VAR compensation. The optimal amount of dynamic VAR as identified by the dy-

namic optimization is able to provide sufficient reactive support not only for the contingencies

considered in the optimization process but also for all other representative cases.

The specific contributions of the research are summarized as follows,

1. Development of control vector parametrization, a dynamic optimization approach to solve

the dynamic VAR planning problem. (a) Overcomes the curse of dimensionality posed

by previous dynamic optimization formulations. (b) Scalable approach to handle large

scale realistic power system models.

2. Classification of contingencies according to their behavioral patterns using clustering
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methods. (a) Development of KL measure, a quantitative measure that captures the rate

and level of recovery of voltage waveforms in a scalar quantity.(b) Two-level clustering

method handles multiple contingencies, scenarios, and operating conditions.

3. Identification of dynamic voltage control areas. (a) DVCA identifies different VAR de-

ficient areas in the system and the contingencies that exposes the weakness. (b) For-

mulation of MILP to identify the most effective control locations to mitigate short-term

voltage problems at the affected buses.

4. Improvement of the CVP solution process using (a) Singular value decomposition (b)

Linear programming to provide starting solution for the NLP optimization routine.

6.2 Future Work

The dynamic VAR planning study methodology developed in this thesis work can be further

enhanced by: 1) Comparing the effectiveness of different types of dynamic VAR support strate-

gies and their cost/benefit assessment; 2) Utilization of reactive support from geographically

distributed, power electronics based distributed generation (DG) resources; and 3) Improvi-

sation in the dynamic optimization procedure through parallelization, multistart algorithms.

6.2.1 Integrated supply side and demand side solutions

If the system does not experience short-term voltage problems frequently, then load shedding

can be considered as a viable and cheaper option to mitigate these problems. In planning

studies, while evaluating the dynamic VAR requirements of the system, load shedding can also

be considered as an option in addition to adding new VAR resources. To accomplish this, an

integrated control scheme that effectively combines both supply-side (addition of dynamic VAR

resources) and demand-side controls (load shedding) to meet the dynamic VAR requirements

of the system. The optimization formulations discussed in this work can be extended to include

demand side controls. A preliminary description of identifying DVCA’s demand side control

locations is provided in Chapter 4.6. Depending upon the severity of the problem and cost of
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installing new devices the user can select appropriate choices to arrive at both economical and

compliant solution for short-term voltage problems. Some preliminary results on the benefits

offered by load shedding strategies are discussed in Chapter 5.6.1.

In this thesis, the majority of work in identifying DVCA was based on supply-side per-

spective. The DVCA identification can be extended to accommodate both supply-side and

demand-side controls in an integrated framework. Then the controls in DVCA will include

addition of new dynamic VAR resources in the bulk system and rank ordered load shedding

locations and amount of load shedding. Further, the reactive support from DG resources and

wind farms can also be used as controls in each DVCA. The extension of the formulation pro-

vided in this work for multiple resources require processing of large data, and proper modeling

(eg: smart inverters) of reactive support capability from DG resources and wind farms.

6.2.2 Reactive support from DG resources

There has been a significantly increasing trend in the development and usage of distributed

energy resources including distributed generation (DG) and demand response (DR) in power

system operations. DG in the form of solar PV, small wind, biomass, gas-fired micro-turbines,

combined heat and power (CHP) resources, and energy storage have been increasingly deployed

in the distribution system and expected to continue its growth in the future. DG with inverter

controls can be used to provide reactive power and voltage control. Solar PV or electric

vehicles (EV) with an inverter, or wind generators with converters can accomplish the same

function as STATCOMs or SVCs but at much less cost. This functionality is most beneficial

when active power generation is low e.g. solar outside of peak production periods. Also, the

DG resources are distributed geographically, therefore providing greater flexibility in providing

reactive support. To utilize DG resources for providing reactive support requires significant

modeling efforts. One approach is to develop aggregate DG models for transmission level

studies. Recently, the modeling and validation work group (MVWG) of the western electricity

coordinating council (WECC) expanded its scope of its Renewable Energy Modeling Task

Force (REMTF) to address the modeling and representation of PV systems for transmission

level studies. The REMTF recognizes the fact that representing distribution-connected PV
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systems in transmission studies is more challenging. Another approach is to represent induction

motor loads and DG resources at the distribution feeder level and evaluate the dynamic VAR

requirements using an integrated transmission-distribution analysis. Since the geographically

distributed DG resources are coordinated properly to provide reactive support, these resources

can reduce the installments of new dynamic VAR devices.

Smart inverters in PV systems can manipulate and control real power and reactive power

independently. These inverters sense local conditions, such as voltage and frequency, and

respond with autonomous actions. Their functionalities include volt-var control, frequency-

watt control, and provide dynamic grid support as a part of low voltage ride through.

6.2.3 Dynamic optimization solution enhancements

Parallel computations can be used to speed up some time-consuming procedures in the

NLP routine to improve overall computational performance of the CVP algorithm. The NLP

routine spends majority of its time in calculating the finite difference gradients. Parallel finite

difference gradient computation will greatly reduce the overall solution time of the NLP opti-

mization. Parallelism can be introduced at two levels, (a) Calculating the constraints Jacobian

matrices for different contingencies concurrently (b) Calculating the sensitivities of different

candidate locations in parallel to construct the constraints Jacobian matrix corresponding to

a single contingency. Parallel computing can also be utilized to increase the computational

efficiency of performing time domain simulations for different contingencies while evaluating

NLP constraints, calculating KL sensitivity matrix for MILP optimization, and contingency

clustering.

The convergence of the CVP algorithm can be improved by using multistart algorithms.

The multistart procedure uses many initial points for the NLP optimization problem and can

be run in parallel on shared memory multi-processor machines. The NLP optimization routine

finds a local optimal solution from each of the initial points and returns the solution with the

best objective function as the final solution. The use of many initial points will also help to

find a pool of local optimal solutions.
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Extension of clustering methods to other power system problems: In this work, clustering

methods are used to identify similarly behaving contingencies under various operating condi-

tions. The construction of similarity matrix forms the essential part of clustering methods. KL

measure of monitored buses for different contingencies is used to construct the similarity ma-

trix. By developing appropriate similarity matrix, the clustering methods described in this work

can be utilized to study other power system problems like generator coherency identification,

contingency classification for studies using steady-state analysis etc.
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APPENDIX A. LIST OF CONTINGENCIES AND VALIDATION

RESULTS

Table A.1: Validation of representative contingencies based dynamic VAR planning

Contingency From To No. of violations No. of violations Is included

ID Bus Bus in base case after MCDO in cluster

1 1 2 38 0 1

2 1 3 111 0 1

3 1 4 41 0 1

4 1 5 39 0 1

5 2 7 0 0 0

6 2 13 0 0 0

7 4 112 22 3 2

8 4 119 19 3 2

9 5 120 38 0 1

10 5 129 38 0 1

11 7 9 0 0 0

12 9 75 6 0 0

13 10 11 1 1 0

14 11 15 0 0 0

15 11 46 4 4 0

16 11 58 0 0 0

17 11 59 3 3 0

Continued on next page
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Table A.1 – Continued from previous page

Contingency From To No. of violations No. of violations Is included

ID Bus Bus in base case after MCDO in cluster

18 15 58 0 0 0

19 16 18 0 0 0

20 17 18 0 0 0

21 18 30 5 5 0

22 18 32 5 5 0

23 19 38 0 0 0

24 20 157 0 0 0

25 21 22 0 0 0

26 22 38 0 0 0

27 22 40 0 0 0

28 22 41 0 0 0

29 23 24 0 0 0

30 24 28 1 0 0

31 24 45 0 0 0

32 25 26 0 0 0

33 25 27 0 0 0

34 26 74 87 0 2

35 26 75 113 28 2

36 28 29 0 0 0

37 29 30 2 2 0

38 29 31 2 2 0

39 30 32 3 3 0

40 32 33 2 2 0

41 33 34 4 4 0

42 33 35 3 3 0

Continued on next page
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Table A.1 – Continued from previous page

Contingency From To No. of violations No. of violations Is included

ID Bus Bus in base case after MCDO in cluster

43 33 36 3 3 0

44 34 40 0 0 0

45 34 77 0 0 0

46 35 40 0 0 0

47 36 67 0 0 0

48 37 39 3 3 0

49 37 126 10 9 2

50 37 127 3 3 0

51 39 42 4 4 0

52 40 81 0 0 0

53 40 82 0 0 0

54 41 81 0 0 0

55 41 83 0 0 0

56 41 84 0 0 0

57 42 109 1 1 0

58 43 44 0 0 0

59 44 102 0 0 0

60 44 103 0 0 0

61 45 54 0 0 0

62 46 47 1 0 0

63 47 48 0 0 0

64 47 49 0 0 0

65 48 51 4 0 0

66 48 52 4 0 0

67 49 87 0 0 0

Continued on next page
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Table A.1 – Continued from previous page

Contingency From To No. of violations No. of violations Is included

ID Bus Bus in base case after MCDO in cluster

68 50 51 3 0 0

69 51 141 5 0 0

70 52 79 13 5 2

71 52 106 18 9 2

72 52 116 13 6 2

73 52 117 13 6 2

74 53 54 0 0 0

75 53 55 0 0 0

76 54 56 0 0 0

77 55 57 0 0 0

78 55 149 0 0 0

79 55 162 0 0 0

80 56 67 0 0 0

81 57 80 0 0 0

82 58 61 0 0 0

83 59 61 1 1 0

84 61 62 0 0 0

85 61 63 0 0 0

86 64 65 0 0 0

87 64 66 0 0 0

88 67 68 0 0 0

89 68 69 2 2 0

90 69 77 3 0 0

91 69 78 3 0 0

92 69 79 5 0 0

Continued on next page
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Table A.1 – Continued from previous page

Contingency From To No. of violations No. of violations Is included

ID Bus Bus in base case after MCDO in cluster

93 70 149 2 0 0

94 70 149 2 0 0

95 71 85 0 0 0

96 71 150 1 0 0

97 74 119 13 0 2

98 75 128 38 0 1

99 78 79 9 4 2

100 78 80 2 0 0

101 82 83 0 0 0

102 84 93 0 0 0

103 85 86 0 0 0

104 86 87 2 2 0

105 86 88 2 2 0

106 88 96 5 3 0

107 88 106 10 9 2

108 89 90 1 0 0

109 90 96 0 0 0

110 91 92 1 1 0

111 91 93 1 1 0

112 91 94 1 1 0

113 92 102 0 0 0

114 94 103 1 1 0

115 94 107 2 1 0

116 95 96 1 1 0

117 95 97 1 1 0

Continued on next page
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Table A.1 – Continued from previous page

Contingency From To No. of violations No. of violations Is included

ID Bus Bus in base case after MCDO in cluster

118 95 98 1 1 0

119 96 100 2 2 0

120 98 105 1 1 0

121 100 104 0 0 0

122 106 107 8 5 2

123 107 122 3 3 0

124 109 119 19 1 2

125 109 124 15 1 2

126 109 125 16 1 2

127 110 111 36 4 1

128 110 134 38 0 1

129 110 141 42 0 1

130 111 115 2 2 0

131 112 120 48 12 1

132 115 117 11 2 2

133 116 117 17 2 2

134 116 147 16 2 2

135 117 147 14 2 2

136 120 128 41 0 1

137 120 129 40 0 1

138 122 123 1 0 0

139 135 138 6 0 0

140 138 139 14 0 1

141 138 140 12 0 1

142 138 145 13 0 1

Continued on next page
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Table A.1 – Continued from previous page

Contingency From To No. of violations No. of violations Is included

ID Bus Bus in base case after MCDO in cluster

143 142 143 4 0 0

144 142 146 3 0 0

145 149 150 17 3 0

146 149 151 3 0 0

147 149 152 3 0 0

148 151 161 0 0 0

149 153 154 0 0 0

150 153 155 0 0 0

151 154 156 0 0 0

152 154 160 0 0 0

153 155 156 0 0 0

154 156 157 0 0 0

155 157 158 0 0 0

156 158 159 0 0 0

157 159 160 0 0 0

158 161 162 0 0 0

159 2 1 0 0 0

160 3 1 0 0 0

161 4 1 23 3 2

162 5 1 42 0 1

163 7 2 0 0 0

164 13 2 0 0 0

165 112 4 42 0 1

166 119 4 26 5 2

167 120 5 42 0 1

Continued on next page
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Table A.1 – Continued from previous page

Contingency From To No. of violations No. of violations Is included

ID Bus Bus in base case after MCDO in cluster

168 129 5 38 0 1

169 9 7 6 0 0

170 75 9 38 0 1

171 11 10 1 1 0

172 15 11 0 0 0

173 46 11 8 8 2

174 58 11 0 0 0

175 59 11 4 4 0

176 58 15 0 0 0

177 18 16 3 3 0

178 18 17 3 3 0

179 30 18 5 5 0

180 32 18 5 5 0

181 38 19 0 0 0

182 157 20 0 0 0

183 22 21 0 0 0

184 38 22 0 0 0

185 40 22 0 0 0

186 41 22 0 0 0

187 24 23 0 0 0

188 28 24 1 1 0

189 45 24 0 0 0

190 26 25 120 0 2

191 27 25 0 0 0

192 74 26 32 0 2

Continued on next page
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Table A.1 – Continued from previous page

Contingency From To No. of violations No. of violations Is included

ID Bus Bus in base case after MCDO in cluster

193 75 26 38 0 1

194 29 28 2 2 0

195 30 29 5 5 0

196 31 29 0 0 0

197 32 30 2 2 0

198 33 32 2 2 0

199 34 33 0 0 0

200 35 33 0 0 0

201 36 33 0 0 0

202 40 34 0 0 0

203 77 34 0 0 0

204 40 35 0 0 0

205 67 36 0 0 0

206 39 37 4 4 0

207 126 37 6 6 0

208 127 37 0 0 0

209 42 39 1 1 0

210 81 40 0 0 0

211 82 40 0 0 0

212 81 41 0 0 0

213 83 41 0 0 0

214 84 41 0 0 0

215 109 42 15 1 2

216 44 43 0 0 0

217 102 44 0 0 0

Continued on next page
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Table A.1 – Continued from previous page

Contingency From To No. of violations No. of violations Is included

ID Bus Bus in base case after MCDO in cluster

218 103 44 1 1 0

219 54 45 0 0 0

220 47 46 0 0 0

221 48 47 4 0 0

222 49 47 0 0 0

223 51 48 5 0 0

224 52 48 13 5 2

225 87 49 0 0 0

226 51 50 6 0 0

227 141 51 6 0 0

228 79 52 12 0 2

229 106 52 13 10 2

230 116 52 17 3 2

231 117 52 14 3 2

232 54 53 0 0 0

233 55 53 0 0 0

234 56 54 0 0 0

235 57 55 0 0 0

236 149 55 3 0 0

237 162 55 0 0 0

238 67 56 0 0 0

239 80 57 0 0 0

240 61 58 0 0 0

241 61 59 0 0 0

242 62 61 0 0 0

Continued on next page
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Table A.1 – Continued from previous page

Contingency From To No. of violations No. of violations Is included

ID Bus Bus in base case after MCDO in cluster

243 63 61 0 0 0

244 65 64 0 0 0

245 66 64 0 0 0

246 68 67 0 0 0

247 69 68 7 3 2

248 77 69 0 0 0

249 78 69 3 0 0

250 79 69 16 0 2

251 149 70 3 0 0

252 149 70 3 0 0

253 85 71 0 0 0

254 150 71 1 0 0

255 119 74 19 4 2

256 128 75 42 0 1

257 79 78 19 0 2

258 80 78 0 0 0

259 83 82 0 0 0

260 93 84 1 1 0

261 86 85 2 2 0

262 87 86 0 0 0

263 88 86 5 2 0

264 96 88 2 2 0

265 106 88 14 9 2

266 90 89 1 0 0

267 96 90 2 2 0

Continued on next page
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Table A.1 – Continued from previous page

Contingency From To No. of violations No. of violations Is included

ID Bus Bus in base case after MCDO in cluster

268 92 91 0 0 0

269 93 91 1 1 0

270 94 91 1 1 0

271 102 92 0 0 0

272 103 94 1 1 0

273 107 94 5 5 0

274 96 95 2 2 0

275 97 95 0 0 0

276 98 95 1 1 0

277 100 96 0 0 0

278 105 98 0 0 0

279 104 100 0 0 0

280 107 106 4 4 0

281 122 107 2 2 0

282 119 109 27 5 2

283 124 109 4 1 0

284 125 109 1 1 0

285 111 110 2 2 0

286 134 110 27 0 1

287 141 110 13 0 2

288 115 111 14 3 2

289 120 112 48 0 1

290 117 115 11 2 2

291 117 116 14 2 2

292 147 116 12 0 2

Continued on next page
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Table A.1 – Continued from previous page

Contingency From To No. of violations No. of violations Is included

ID Bus Bus in base case after MCDO in cluster

293 147 117 12 0 2

294 128 120 39 0 1

295 129 120 38 0 1

296 123 122 0 0 0

297 138 135 12 0 1

298 139 138 7 0 0

299 140 138 6 0 0

300 145 138 6 0 0

301 143 142 5 0 0

302 146 142 4 0 0

303 150 149 2 2 0

304 151 149 0 0 0

305 152 149 0 0 0

306 161 151 0 0 0

307 154 153 0 0 0

308 155 153 0 0 0

309 156 154 0 0 0

310 160 154 0 0 0

311 156 155 0 0 0

312 157 156 0 0 0

313 158 157 0 0 0

314 159 158 0 0 0

315 160 159 0 0 0

316 162 161 0 0 0
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APPENDIX B. SAMPLE COMPOSITE LOAD DYNAMIC DATA

3 ’USRLOD’ * ’CMLDZNU1’ 12 3 0 132 27 146 48

100.00 0.0000 0.0000 0.50000E-01 0.0000

0.10000 1.0000 1.0000 0.0000 0.90000

1.1000 0.63000E-02 1.0200 1.0400 30.000

5.0000 0.10000E-01 0.11000 0.72000E-01 0.23000

0.0000 0.35000 0.0000 0.95000 0.0000

0.0000 0.97980 1.0000 1.0000 2.0000

0.0000 0.0000 1.0000 0.0000 2.0000

0.0000 0.0000

3.0000 0.80000 0.35000E-01 2.8940 0.24800

0.24800 0.16370 0.16370 1.5000 1.0000

0.0000 999.00 0.0000 999.00 999.00

9999.0 9999.0 0.0000 9999.0 9999.0

3.0000 0.80000 0.35000E-01 2.8940 0.24800

0.24800 0.16370 0.16370 0.11000 1.0000

0.0000 999.00 0.0000 999.00 999.00

9999.0 9999.0 0.0000 9999.0 9999.0

3.0000 0.0000 -1.0000 -1.0000 -1.0000

-1.0000 -1.0000 -1.0000 -1.0000 -1.0000
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-1.0000 -1.0000 -1.0000 -1.0000 -1.0000

-1.0000 -1.0000 -1.0000 -1.0000 -1.0000

0.33000E-01 0.60000 0.20000E-01 0.50000E-01

1.0000 0.97000 0.60000 0.12400

0.11400 0.0000 0.0000 1.0000

6.0000 2.0000 12.000 3.2000

11.000 2.5000 0.86000 0.80000

0.70000 1.0000 -3.3000 0.50000

0.40000 0.60000 0.50000 20.000

0.70000 1.3000 0.0000 0.80000

0.20000 0.90000 5.0000 /
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